9 research outputs found

    Impact of Oxidative Stress on Inflammation in Rheumatoid and Adjuvant Arthritis: Damage to Lipids, Proteins, and Enzymatic Antioxidant Defense in Plasma and Different Tissues

    Get PDF
    Animal models of rheumatoid arthritis (RA) are widely used for testing potential new therapies for RA. The most commonly used models of human RA are adjuvant-induced arthritis (AIA) and collagen-induced arthritis in rats and mice. In this chapter, we will focus on inflammatory and oxidative stress (OS) processes during the development of AIA. OS is a result of increased production of reactive oxygen species (ROS) or a reduction in the body’s endogenous antioxidant defense system. ROS and reactive nitrogen species (RNS) can contribute to the pathogenesis of RA by the induction of membrane oxidation, irreversible damage to proteins and DNA, cartilage damage, and induction of bone resorption. ROS/RNS can also modulate a variety of signaling events that control gene expression and affect cellular processes that participate in chronic inflammation. Our research team has been studying the course of OS during the development of rat AIA for more than a decade. We have analyzed the course of OS using markers of lipid peroxidation (malondialdehyde, 4-hydroxy-2-nonenal, and F-2 isoprostanes), protein carbonyls, antioxidant enzymes (heme oxygenase and gamma-glutamyl transferase), and levels of endogenous antioxidants (coenzyme Q10 and Q9, gamma-tocopherol) in plasma and different tissues (joint, liver, lung, skeletal muscle, and spleen)

    Inflammation in the Pathogenesis of Rheumatoid Arthritis and in Experimental Arthritis: Evaluation of Combinations of Carnosic Acid and Extract of <em>Rhodiola rosea</em> L. with Methotrexate

    Get PDF
    The host immune response generates the pro-inflammatory immune response as a protective measure against invading pathogens, allergens, and/or trauma. However, dysregulated and chronic inflammation may result in secondary damage to tissues and immune pathology to the host. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease which primarily involves synovial inflammation, joint pain, immobility, and stiffness. Increased infiltration of inflammatory immune cells and fibroblast-like synoviocytes into joints, form pannus and small blood vessels that lead to synovium and cartilage destruction. In this chapter we will focus on the role of inflammatory cytokines (IL-1β, IL-6 and IL-17), chemokine monocyte chemotactic protein-1 and matrix metalloproteinase-9 in the pathogenesis of experimental arthritis in animals and in human RA. Further, we will be discussing about methotrexate’s (cornerstone of anti-rheumatic therapy) immune suppressing activity, anti-inflammatory properties of carnosic acid and extract of Rhodiola rosea L., and their innovative combination treatments with methotrexate in rat adjuvant arthritis

    Adverse changes in cortical and trabecular bone compartments of the femur in rats with adjuvant-induced arthritis after one remodelling cycle

    No full text
    It is widely known that rheumatoid arthritis (RA) is associated with articular bone damage. However, there is still not enough information on whether the inflammatory process can deteriorate bone microstructure outside the joint as well. Furthermore, the impact of RA on the microscopic structure of cortical and trabecular bone, including parameters of bone microarchitecture, strength, and geometry after one remodelling cycle, has not been determined, yet. Therefore, this study investigated possible alterations in both cortical and trabecular bone compartments of the femur in a rat model of adjuvant-induced arthritis (AA) 28 days post disease induction. AA was generally evoked by a single intradermal injection ofsuspension of heat-inactivated Mycobacterium butyricumin incomplete Freund’s adjuvant. We have found that AA resulted in inflammation as evidenced by increased hind paw swelling, decreased levels of circulating albumin, and elevated levels of nitrite/nitrate, interleukin-1β. Detrimental changes in examined bone parameters related to microarchitecture, strength, and geometry were revealed in AA rats. Overall, AA was associated with bone loss, decreased bone mineral density in bothcortical and trabecular bone compartments, as well as reduced mechanical competence, and more intense vascularization in the cortical bone. According to our results, AA-related inflammation caused structural degradation of cortical and trabecular bone quality, as well as mechanical weakness in the femoral diaphysis leading to bone fragility after only one remodelling cycle. The findings focused on the femoral diaphysis, which is located outside the joint, are the first in this field of research

    Bioflavonoid Robinin from Astragalus falcatus Lam. Mildly Improves the Effect of Metothrexate in Rats with Adjuvant Arthritis

    No full text
    Anti-inflammatory potential of orally administrated bioflavonoid-robinin, active sub-stance of original drug Flaroninum™ (FL), was investigated in the combination with methotrexate (MTX) and in monotherapy in rats suffering from adjuvant-induced arthritis (AA). Robinin (kaempferol-3-O-robinoside-7-O-rhamnoside) was isolated from the aerial parts of Astragalus falcatus Lam. The monotherapy with robinin was not efficient in alleviating symptoms of AA. The combination of MTX with robinin was similarly active as MTX alone in reducing the hind paw volume and change of body weight during the whole experiment. The combination, however, reduced plasma levels of Interleukin-17Aand activity of gamma-glutamyl transferase in joint more efficiently then MTX alone. Our results demonstrate that the novel combination of robinin and MTX mildly improved the reduction of inflammation in experimental arthritis

    Combined methotrexate and coenzyme Q10 therapy in adjuvant-induced arthritis evaluated using parameters of inflammation and oxidative stress

    No full text
    Rheumatoid arthritis is a common severe joint disease that affects all age groups, it is thus of great importance to develop new strategies for its treatment. The aim of the present study was to examine the combined effect of coenzyme Q10 (CoQ10) and methotrexate (MTX) on the progression of adjuvant-induced arthritis in rats. Adjuvant arthritis (AA) was induced by a single intradermal injection of heat-inactivated Mycobacterium butyricum in incomplete Freund's adjuvant. The experiments included healthy animals, arthritic animals not treated, arthritic animals treated with CoQ10, with methotrexate, and with a combination of CoQ10 and methotrexate. The two latter groups received a daily oral dose of 20 mg/kg b.w. of CoQ10, either alone or with methotrexate in an oral dose of 0.3 mg/kg b.w. twice a week. We found that CoQ10 potentiated both the antiarthritic (decrease of hind paw volume) and the antioxidant effect of methotrexate on the level of oxidation of proteins (suppression of protein carbonyl level in plasma) as well as lipoperoxidation (suppression of levels of HNE-adducts and MDA-adducts to plasma proteins). The same effect was observed for plasmatic levels of CoQ9 and IL-1α, and partially also for γ-glutamyltransferase activity assessed in joints and spleen. Moreover, the combination therapy improved the functionality of peripheral blood neutrophils in AA, with a balancing effect on the immunosuppression caused by MTX monotherapy. In summary, combined administration of CoQ10 and methotrexate suppressed arthritic progression in rats more effectively than did MTX alone. This finding may help improve treatment of rheumatoid arthritis

    Modulation of SERCA in the chronic phase of adjuvant arthritis as a possible adaptation mechanism of redox imbalance

    No full text
    Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species
    corecore