236 research outputs found
Zurek-Kibble domain structures: The Dynamics of Spontaneous Vortex formation in Annular Josephson Tunnel Junctions
Phase transitions executed in a finite time show a domain structure with
defects, that has been argued by Zurek and Kibble to depend in a characteristic
way on the quench rate. In this letter we present an experiment to measure the
Zurek-Kibble scaling exponent sigma. Using symmetric and long Josephson Tunnel
Junctions, for which the predicted index is sigma = 0.25, we find sigma = 0.27
+/- 0.05. Further, there is agreement with the ZK prediction for the overall
normalisation.Comment: To be published in Phys. Rev. Lett
Dynamics of Quantum Phase Transition in an Array of Josephson Junctions
We study the dynamics of the Mott insulator-superfluid quantum phase
transition in a periodic 1D array of Josephson junctions. We show that crossing
the critical point diabatically i.e. at a finite rate with a quench time
induces finite quantum fluctuations of the current around the loop
proportional to . This scaling could be experimentally verified
with in array of weakly coupled Bose-Einstein condensates or superconducting
grains.Comment: 4 pages in RevTex, 3 .eps figures; 2 references added; accepted for
publication in Phys.Rev.Let
Defect Formation and Critical Dynamics in the Early Universe
We study the nonequilibrium dynamics leading to the formation of topological
defects in a symmetry-breaking phase transition of a quantum scalar field with
\lambda\Phi^4 self-interaction in a spatially flat, radiation-dominated
Friedmann-Robertson-Walker Universe. The quantum field is initially in a
finite-temperature symmetry-restored state and the phase transition develops as
the Universe expands and cools. We present a first-principles, microscopic
approach in which the nonperturbative, nonequilibrium dynamics of the quantum
field is derived from the two-loop, two-particle-irreducible closed-time-path
effective action. We numerically solve the dynamical equations for the
two-point function and we identify signatures of topological defects in the
infrared portion of the momentum-space power spectrum. We find that the density
of topological defects formed after the phase transition scales as a power law
with the expansion rate of the Universe. We calculate the equilibrium critical
exponents of the correlation length and relaxation time for this model and show
that the power law exponent of the defect density, for both overdamped and
underdamped evolution, is in good agreement with the "freeze-out" scenario of
Zurek. We introduce an analytic dynamical model, valid near the critical point,
that exhibits the same power law scaling of the defect density with the quench
rate. By incorporating the realistic quench of the expanding Universe, our
approach illuminates the dynamical mechanisms important for topological defect
formation. The observed power law scaling of the defect density with the quench
rate, observered here in a quantum field theory context, provides evidence for
the "freeze-out" scenario in three spatial dimensions.Comment: 31 pages, RevTex, 8 figures in EPS forma
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate
A central goal in condensed matter and modern atomic physics is the
exploration of many-body quantum phases and the universal characteristics of
quantum phase transitions in so far as they differ from those established for
thermal phase transitions. Compared with condensed-matter systems, atomic gases
are more precisely constructed and also provide the unique opportunity to
explore quantum dynamics far from equilibrium. Here we identify a second-order
quantum phase transition in a gaseous spinor Bose-Einstein condensate, a
quantum fluid in which superfluidity and magnetism, both associated with
symmetry breaking, are simultaneously realized. Rb spinor condensates
were rapidly quenched across this transition to a ferromagnetic state and
probed using in-situ magnetization imaging to observe spontaneous symmetry
breaking through the formation of spin textures, ferromagnetic domains and
domain walls. The observation of topological defects produced by this symmetry
breaking, identified as polar-core spin-vortices containing non-zero spin
current but no net mass current, represents the first phase-sensitive in-situ
detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
Unraveling critical dynamics: The formation and evolution of topological textures
We study the formation of topological textures in a nonequilibrium phase
transition of an overdamped classical O(3) model in 2+1 dimensions. The phase
transition is triggered through an external, time-dependent effective mass,
parameterized by quench timescale \tau. When measured near the end of the
transition the texture separation and the texture width scale respectively as
\tau^(0.39 \pm 0.02) and \tau^(0.46 \pm 0.04), significantly larger than
\tau^(0.25) predicted from the Kibble-Zurek mechanism. We show that
Kibble-Zurek scaling is recovered at very early times but that by the end of
the transition the power-laws result instead from a competition between the
length scale determined at freeze-out and the ordering dynamics of a textured
system. In the context of phase ordering these results suggest that the
multiple length scales characteristic of the late-time ordering of a textured
system derive from the critical dynamics of a single nonequilibrium correlation
length. In the context of defect formation these results imply that significant
evolution of the defect network can occur before the end of the phase
transition. Therefore a quantitative understanding of the defect network at the
end of the phase transition generally requires an understanding of both
critical dynamics and the interactions among topological defects.Comment: 12 pages, revtex, 9 figures in eps forma
The d subunit plays a central role in human vacuolar H+-ATPases
The multi-subunit vacuolar-type H+-ATPase consists of a V1 domain (A–H subunits) catalyzing ATP hydrolysis and a V0 domain (a, c, c′, c″, d, e) responsible for H+ translocation. The mammalian V0 d subunit is one of the least-well characterized, and its function and position within the pump are still unclear. It has two different forms encoded by separate genes, d1 being ubiquitous while d2 is predominantly expressed at the cell surface in kidney and osteoclast. To determine whether it forms part of the pump’s central stalk as suggested by bacterial A-ATPase studies, or is peripheral as hypothesized from a yeast model, we investigated both human d subunit isoforms. In silico structural modelling demonstrated that human d1 and d2 are structural orthologues of bacterial subunit C, despite poor sequence identity. Expression studies of d1 and d2 showed that each can pull down the central stalk’s D and F subunits from human kidney membrane, and in vitro studies using D and F further showed that the interactions between these proteins and the d subunit is direct. These data indicate that the d subunit in man is centrally located within the pump and is thus important in its rotary mechanism
Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals
The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography
Electrode Polarization Effects in Broadband Dielectric Spectroscopy
In the present work, we provide broadband dielectric spectra showing strong
electrode polarization effects for various materials, belonging to very
different material classes. This includes both ionic and electronic conductors
as, e.g., salt solutions, ionic liquids, human blood, and
colossal-dielectric-constant materials. These data are intended to provide a
broad data base enabling a critical test of the validity of phenomenological
and microscopic models for electrode polarization. In the present work, the
results are analyzed using a simple phenomenological equivalent-circuit
description, involving a distributed parallel RC circuit element for the
modeling of the weakly conducting regions close to the electrodes. Excellent
fits of the experimental data are achieved in this way, demonstrating the
universal applicability of this approach. In the investigated ionically
conducting materials, we find the universal appearance of a second dispersion
region due to electrode polarization, which is only revealed if measuring down
to sufficiently low frequencies. This indicates the presence of a second
charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form
(see "Data Conservancy"
Counting defects in an instantaneous quench
The objective of this paper is to study the formation of defects in a non
equilibrium second order phase transition by means of a numerical solution of
the full dynamical equations, and to compare the results with theoretical
predictions to be found in the literature. We simulate an instantaneous quench
to zero temperature in a type II superconductor, measuring the actual density
of defects and its theoretically expected value as a function of time. We also
characterize quantitatively some aspects of the out of equilibrium phase
transition.Comment: 19 pages, 9 figure
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …