34,584 research outputs found

    Critical temperature and Ginzburg region near a quantum critical point in two-dimensional metals

    Full text link
    We compute the transition temperature TcT_c and the Ginzburg temperature TGT_{\rm G} above TcT_c near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calculation is based on a renormalization group analysis of the Hertz action with a scalar order parameter. We provide analytic expressions for TcT_c and TGT_{\rm G} as a function of the non-thermal control parameter for the quantum phase transition, including logarithmic corrections. The Ginzburg regime between TcT_c and TGT_{\rm G} occupies a sizable part of the phase diagram.Comment: 5 pages, 1 figur

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Size Matters: Origin of Binomial Scaling in Nuclear Fragmentation Experiments

    Get PDF
    The relationship between measured transverse energy, total charge recovered in the detector, and size of the emitting system is investigated. Using only very simple assumptions, we are able to reproduce the observed binomial emission probabilities and their dependences on the transverse energy.Comment: 14 pages, including 4 figure

    Phase Transitions in a Two-Component Site-Bond Percolation Model

    Full text link
    A method to treat a N-component percolation model as effective one component model is presented by introducing a scaled control variable p+p_{+}. In Monte Carlo simulations on 16316^{3}, 32332^{3}, 64364^{3} and 1283128^{3} simple cubic lattices the percolation threshold in terms of p+p_{+} is determined for N=2. Phase transitions are reported in two limits for the bond existence probabilities p=p_{=} and p≠p_{\neq}. In the same limits, empirical formulas for the percolation threshold p+cp_{+}^{c} as function of one component-concentration, fbf_{b}, are proposed. In the limit p==0p_{=} = 0 a new site percolation threshold, fbc≃0.145f_{b}^{c} \simeq 0.145, is reported.Comment: RevTeX, 5 pages, 5 eps-figure

    The determinants of direct air fares to Cleveland: how competitive?

    Get PDF
    Using a model developed to examine the determinants of air fares, the authors discuss the relationship between airline industry competitiveness and fare increases.Airlines ; Competition ; Cleveland (Ohio)

    GenEvA (I): A new framework for event generation

    Full text link
    We show how many contemporary issues in event generation can be recast in terms of partonic calculations with a matching scale. This framework is called GenEvA, and a key ingredient is a new notion of phase space which avoids the problem of phase space double-counting by construction and includes a built-in definition of a matching scale. This matching scale can be used to smoothly merge any partonic calculation with a parton shower. The best partonic calculation for a given region of phase space can be determined through physics considerations alone, independent of the algorithmic details of the merging. As an explicit example, we construct a positive-weight partonic calculation for e+e- -> n jets at next-to-leading order (NLO) with leading-logarithmic (LL) resummation. We improve on the NLO/LL result by adding additional higher-multiplicity tree-level (LO) calculations to obtain a merged NLO/LO/LL result. These results are implemented using a new phase space generator introduced in a companion paper [arXiv:0801.4028].Comment: 60 pages, 22 figures, v2: corrected typos, added reference

    Gaining analytic control of parton showers

    Get PDF
    Parton showers are widely used to generate fully exclusive final states needed to compare theoretical models to experimental observations. While, in general, parton showers give a good description of the experimental data, the precise functional form of the probability distribution underlying the event generation is generally not known. The reason is that realistic parton showers are required to conserve four-momentum at each vertex. In this paper we investigate in detail how four-momentum conservation is enforced in a standard parton shower and why this destroys the analytic control of the probability distribution. We show how to modify a parton shower algorithm such that it conserves four-momentum at each vertex, but for which the full analytic form of the probability distribution is known. We then comment how this analytic control can be used to match matrix element calculations with parton showers, and to estimate effects of power corrections and other uncertainties in parton showers.Comment: 12 pages, 6 figures, v2: final journal versio
    • …
    corecore