29,784 research outputs found

    Superconductivity in the Kondo lattice model

    Full text link
    We study the Kondo lattice model with additional attractive interaction between the conduction electrons within the dynamical mean-field theory using the numerical renormalization group to solve the effective quantum impurity problem. In addition to normal-state and magnetic phases we also allow for the occurrence of a superconducting phase. In the normal phase we observe a very sensitive dependence of the low-energy scale on the conduction-electron interaction. We discuss the dependence of the superconducting transition on the interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding

    Phase Transition with the Berezinskii--Kosterlitz--Thouless Singularity in the Ising Model on a Growing Network

    Full text link
    We consider the ferromagnetic Ising model on a highly inhomogeneous network created by a growth process. We find that the phase transition in this system is characterised by the Berezinskii--Kosterlitz--Thouless singularity, although critical fluctuations are absent, and the mean-field description is exact. Below this infinite order transition, the magnetization behaves as exp(const/TcT)exp(-const/\sqrt{T_c-T}). We show that the critical point separates the phase with the power-law distribution of the linear response to a local field and the phase where this distribution rapidly decreases. We suggest that this phase transition occurs in a wide range of cooperative models with a strong infinite-range inhomogeneity. {\em Note added}.--After this paper had been published, we have learnt that the infinite order phase transition in the effective model we arrived at was discovered by O. Costin, R.D. Costin and C.P. Grunfeld in 1990. This phase transition was considered in the papers: [1] O. Costin, R.D. Costin and C.P. Grunfeld, J. Stat. Phys. 59, 1531 (1990); [2] O. Costin and R.D. Costin, J. Stat. Phys. 64, 193 (1991); [3] M. Bundaru and C.P. Grunfeld, J. Phys. A 32, 875 (1999); [4] S. Romano, Mod. Phys. Lett. B 9, 1447 (1995). We would like to note that Costin, Costin and Grunfeld treated this model as a one-dimensional inhomogeneous system. We have arrived at the same model as a one-replica ansatz for a random growing network where expected to find a phase transition of this sort based on earlier results for random networks (see the text). We have also obtained the distribution of the linear response to a local field, which characterises correlations in this system. We thank O. Costin and S. Romano for indicating these publications of 90s.Comment: 5 pages, 2 figures. We have added a note indicating that the infinite order phase transition in the effective model we arrived at was discovered in the work: O. Costin, R.D. Costin and C.P. Grunfeld, J. Stat. Phys. 59, 1531 (1990). Appropriate references to the papers of 90s have been adde

    Ds+ϕρ+D_s^+ \to \phi \rho^+ Decay

    Full text link
    Motivated by the experimental measurement of the decay rate, Γ\Gamma, and the longitudinal polarization, PLP_L, in the Cabibbo favored decay Ds+ϕρ+D_s^+\to \phi {\rho}^{+}, we have studied theoretical prediction within the context of factorization approximation invoking several form factors models. We were able to obtain agreement with experiment for both Γ\Gamma and PLP_L by using experimentally measured values of the form factors A1Dsϕ(0)A_1^{D_s\phi}(0), A2Dsϕ(0)A_2^{D_s\phi}(0) and VDsϕ(0)V^{D_s\phi}(0) in the semi-leptonic decay Ds+ϕl+νlD_s^+\to \phi l^{+}\nu_{l}. We have also included in our calculation the effect of the final state interaction (fsifsi) by working with the partial waves amplitudes SS, PP and DD. Numerical calculation shows that the decay amplitude is dominated by SS wave, and that the polarization is sensitive to the interference between SS and DD waves. The range of the phase difference δSD=δSδD\delta_{SD} = \delta_S - \delta_D accommodated by experimental error in PLP_L is large.Comment: 7 pages, LaTe

    A Critical Study of B Decays to Light Pseudoscalar

    Get PDF
    Motivated by the large branching ratios observed for the process BηKB\to\eta^{\prime}K, we examine critically all the ingredients that go into estimates of B decays into two light pseudoscalars. Within factorization approximation, we examine several assumptions on the input parameters that could have a strong bearing on the predictions. Among these are (i) the QCD scale μ\mu (ii) value of the form factors (iii) value of the light quark masses, and in particular msm_s (iv) the value ξ=1/Nc\xi=1/N_c, (v) charm content of η\eta^{\prime}. It is possible to account for all the data without invoking new physics, though future experiments will provide tighter constraints on the parameter space. We fin that CP violating asymmetries are in the observable range for some modes.Comment: 29 pages(Latex), 17 figures, a few changes have been made, version to appear in Phys.Rev.

    Chandra and HST Confirmation of the Luminous and Variable X-ray Source IC 10 X-1 as a Possible Wolf-Rayet, Black-Hole Binary

    Full text link
    We present a Chandra and HST study of IC 10 X-1, the most luminous X-ray binary in the closest starburst galaxy to the Milky Way. Our new hard X-ray observation of X-1 confirms that it has an average 0.5-10 keV luminosity of 1.5e38 erg/s, is strongly variable (a factor of ~2 in >3 ks), and is spatially coincident (within 0.'23 +/-0.'30) with the Wolf-Rayet (WR) star [MAC92] 17A in IC 10. The spectrum of X-1 is best fit by a power law with photon index of ~1.8 and a thermal plasma with kT~1.5 keV, although systematic residuals hint at further complexity. Taken together, these facts suggest that X-1 may be a black hole belonging to the rare class of WR binaries; it is comparable in many ways to Cyg X-3. The Chandra observation also finds evidence for extended X-ray emission co-spatial with the large non-thermal radio superbubble surrounding X-1.Comment: ApJL in press (Oct 2003), 4 pages, 4 figures (w/ fig1 at severely reduced quality), latest emulateapj.cls use

    Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110)

    Full text link
    We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au on W(110) near the transition temperature between stripes and the non-patterned (homogeneous) phase. We demonstrate that the amplitude of this Au stripe phase decreases with increasing temperature and vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with temperature and coverage than theories of stress-domain patterns with sharp phase boundaries would predict, and maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should often appear near the ODT.Comment: 5 page

    Long-range two-body final-state interactions and direct CP asymmetry in {B}^{+}\to{\pi}^{+} {K}^{0} decay

    Full text link
    We present a calculation of the direct CP asymmetry, ACPdirA_{CP}^{dir}, for the process B+π+K0B^+ \to \pi^+ K^0 including the effects of long-range inelastic final-state interactions (FSI). We admit three channels in our calculation: B+(π+K0),(ηK+)B^+ \to (\pi^+ K^0), (\eta K^+), and (Ds+Dˉ0)(D_s^+ \bar{D}^0). The strong scattering is described in terms of Pomeron and Regge exchanges. We find that the direct CP asymmetry is enhanced by a factor of 3\sim 3 as a result of FSI, but remains well short of the claims of (10 - 20)% in recent literature. A critical assessment of papers claiming large CP asymmetries is also presented.Comment: 21 pages, latex, no figures. Added the charge-exchange channel {B}^{+}\to {\pi}^{0} {K}^{+}. Expanded the discussion section. To be published in Phys. Rev.
    corecore