4,667 research outputs found

    Maximal entropy random networks with given degree distribution

    Full text link
    Using a maximum entropy principle to assign a statistical weight to any graph, we introduce a model of random graphs with arbitrary degree distribution in the framework of standard statistical mechanics. We compute the free energy and the distribution of connected components. We determine the size of the percolation cluster above the percolation threshold. The conditional degree distribution on the percolation cluster is also given. We briefly present the analogous discussion for oriented graphs, giving for example the percolation criterion.Comment: 22 pages, LateX, no figur

    Dipolar SLEs

    Full text link
    We present basic properties of Dipolar SLEs, a new version of stochastic Loewner evolutions (SLE) in which the critical interfaces end randomly on an interval of the boundary of a planar domain. We present a general argument explaining why correlation functions of models of statistical mechanics are expected to be martingales and we give a relation between dipolar SLEs and CFTs. We compute SLE excursion and/or visiting probabilities, including the probability for a point to be on the left/right of the SLE trace or that to be inside the SLE hull. These functions, which turn out to be harmonic, have a simple CFT interpretation. We also present numerical simulations of the ferromagnetic Ising interface that confirm both the probabilistic approach and the CFT mapping.Comment: 22 pages, 4 figure

    SLE martingales and the Virasoro algebra

    Get PDF
    We present an explicit relation between representations of the Virasoro algebra and polynomial martingales in stochastic Loewner evolutions (SLE). We show that the Virasoro algebra is the spectrum generating algebra of SLE martingales. This is based on a new representation of the Virasoro algebra, inspired by the Borel-Weil construction, acting on functions depending on coordinates parametrizing conformal maps

    Quantum Stochastic Processes: A Case Study

    Full text link
    We present a detailed study of a simple quantum stochastic process, the quantum phase space Brownian motion, which we obtain as the Markovian limit of a simple model of open quantum system. We show that this physical description of the process allows us to specify and to construct the dilation of the quantum dynamical maps, including conditional quantum expectations. The quantum phase space Brownian motion possesses many properties similar to that of the classical Brownian motion, notably its increments are independent and identically distributed. Possible applications to dissipative phenomena in the quantum Hall effect are suggested.Comment: 35 pages, 1 figure

    Condensation phase transition in nonlinear fitness networks

    Full text link
    We analyze the condensation phase transitions in out-of-equilibrium complex networks in a unifying framework which includes the nonlinear model and the fitness model as its appropriate limits. We show a novel phase structure which depends on both the fitness parameter and the nonlinear exponent. The occurrence of the condensation phase transitions in the dynamical evolution of the network is demonstrated by using Bianconi-Barabasi method. We find that the nonlinear and the fitness preferential attachment mechanisms play important roles in formation of an interesting phase structure.Comment: 6 pages, 5 figure

    Fusion and singular vectors in A1{(1)} highest weight cyclic modules

    Full text link
    We show how the interplay between the fusion formalism of conformal field theory and the Knizhnik--Zamolodchikov equation leads to explicit formulae for the singular vectors in the highest weight representations of A1{(1)}.Comment: 42 page

    LERW as an example of off-critical SLEs

    Get PDF
    Two dimensional loop erased random walk (LERW) is a random curve, whose continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter kappa=2. In this article we study ``off-critical loop erased random walks'', loop erasures of random walks penalized by their number of steps. On one hand we are able to identify counterparts for some LERW observables in terms of symplectic fermions (c=-2), thus making further steps towards a field theoretic description of LERWs. On the other hand, we show that it is possible to understand the Loewner driving function of the continuum limit of off-critical LERWs, thus providing an example of application of SLE-like techniques to models near their critical point. Such a description is bound to be quite complicated because outside the critical point one has a finite correlation length and therefore no conformal invariance. However, the example here shows the question need not be intractable. We will present the results with emphasis on general features that can be expected to be true in other off-critical models.Comment: 45 pages, 2 figure

    Calogero-Sutherland eigenfunctions with mixed boundary conditions and conformal field theory correlators

    Full text link
    We construct certain eigenfunctions of the Calogero-Sutherland hamiltonian for particles on a circle, with mixed boundary conditions. That is, the behavior of the eigenfunction, as neighbouring particles collide, depend on the pair of colliding particles. This behavior is generically a linear combination of two types of power laws, depending on the statistics of the particles involved. For fixed ratio of each type at each pair of neighboring particles, there is an eigenfunction, the ground state, with lowest energy, and there is a discrete set of eigenstates and eigenvalues, the excited states and the energies above this ground state. We find the ground state and special excited states along with their energies in a certain class of mixed boundary conditions, interpreted as having pairs of neighboring bosons and other particles being fermions. These particular eigenfunctions are characterised by the fact that they are in direct correspondence with correlation functions in boundary conformal field theory. We expect that they have applications to measures on certain configurations of curves in the statistical O(n) loop model. The derivation, although completely independent from results of conformal field theory, uses ideas from the "Coulomb gas" formulation.Comment: 35 pages, 9 figure

    Applicability of Perturbative QCD to BDB\to D Decays

    Full text link
    We examine the applicability of perturbative QCD to BB meson decays into DD mesons. We find that the perturbative QCD formalism, which includes Sudakov effects at intermediate energy scales, is applicable to the semi-leptonic decay BDlνB\to D l\nu, when the DD meson recoils fast. Following this conclusion, we analyze the two-body non-leptonic decays BDπB\to D\pi and BDDsB\to DD_s. By comparing our predictions with experimental data, we extract the matrix element Vcb=0.044|V_{cb}|=0.044.Comment: 18 pages in Latex, figures are available upon reques

    Even-visiting random walks: exact and asymptotic results in one dimension

    Full text link
    We reconsider the problem of even-visiting random walks in one dimension. This problem is mapped onto a non-Hermitian Anderson model with binary disorder. We develop very efficient numerical tools to enumerate and characterize even-visiting walks. The number of closed walks is obtained as an exact integer up to 1828 steps, i.e., some 1053510^{535} walks. On the analytical side, the concepts and techniques of one-dimensional disordered systems allow to obtain explicit asymptotic estimates for the number of closed walks of 4k4k steps up to an absolute prefactor of order unity, which is determined numerically. All the cumulants of the maximum height reached by such walks are shown to grow as k1/3k^{1/3}, with exactly known prefactors. These results illustrate the tight relationship between even-visiting walks, trapping models, and the Lifshitz tails of disordered electron or phonon spectra.Comment: 24 pages, 4 figures. To appear in J. Phys.
    corecore