2,005 research outputs found

    Highly specific silver ion detection by fluorescent carbon quantum dots

    Get PDF
    Nitrogen-doped carbon quantum dots are easily obtainable nanomaterials endowed with remarkable fluorescence properties for the detection of contaminations by heavy metals. In this report, we show that nanometric particles with high specificity for silver cations can be prepared by hydrothermal synthesis starting from citric and folic acid solutions. Solutions of these N-CQDs give a strong fluorescence emission in the violet region (385 nm) when excited at 330 nm, which can be quenched selectively by silver (I) cations at sub-nanomolar concentrations, while other cations do not give any effect. This remarkable feature was tentatively correlated with the stronger interactions between silver ion and small portions of the nanomaterial surface by comparing Ag+ and the isoelectronic Cd2

    NOVEL SYNTHESIS OF METAL OXIDE NANOPARTICLES FROM TYPE IV DEEP EUTECTIC SOLVENTS

    Get PDF
    One of the fields where DES show remarkable added-values is the synthesis of inorganic materials, in particular nanoparticles. In this field, the inherent and highly-tunable nano homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed and some exciting examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like/thin layered shapes. Use of the prepared nanoparticles as fluorescent materials for the detection of various contaminants is under development

    Functionalization of gold nanoparticles with Ru-porphyrin and their selectivity in the oligomerization of alkynes

    Get PDF
    Gold nanoparticles (AuNPs) were functionalized by ruthenium porphyrins through a sulfur/gold covalent bond using a three-steps reaction. The catalyst was characterized by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in order to control the binding of ruthenium porphyrin on AuNPs’ surface. The catalyst was tested and compared with an analog system not bound to AuNPs in the oligomerization reaction using 1-phenylacetylene as the substrate

    Recent advances in the synthesis of inorganic materials using environmentally friendly media

    Get PDF
    Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials—in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use “classical” DES, such as reline

    CuO nanoparticles and microaggregates: an experimental and computational study of structure and electronic properties

    Get PDF
    The link between morphology and properties is well-established in the nanoparticle literature. In this report, we show that different approaches in the synthesis of copper oxide can lead to nanoparticles (NPs) of different size and morphology. The structure and properties of the synthesized NPs are investigated with powder X-ray diffraction, scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). Through detailed SEM analyses, we were able to correlate the synthetic pathways with the particles’ shape and aggregation, pointing out that bare hydrothermal pathways yield mainly spheroidal dandelion-like aggregates, whereas, if surfactants are added, the growth of the nanostructures along a preferential direction is promoted. The effect of the morphology on the electronic properties was evaluated through DRS, which allowed us to obtain the electron bandgap in every system synthesized, and to find that the rearrangement of threaded particles into more compact structures leads to a reduction in the energy difference. The latter result was compared with Density Functional Theory (DFT) computational models of small centrosymmetric CuO clusters, cut from the tenorite crystal structure. The computed UV-Vis absorption spectra obtained from the clusters are in good agreement with experimental findings

    Comparative treatments of a green tattoo ink with Ruby, Nd: YAG nano- and picosecond lasers in normal and array mode

    Get PDF
    The tattoos removal has become an issue upon spread of the tattooing practice worldwide and hindsight regrets. Lasers are typically used for the purpose, though some colours such as green are considered “recalcitrant” to the treatment. In the current investigation, we aim at determining the efcacy of removal of a green ink water dispersion, using 5 laser treatments: Nd:YAG nano- and picosecond lasers in normal and array mode and Ruby nanosecond laser, keeping the total irradiated energy constant. The UV–Vis spectroscopy of the treated samples indicate that Nd:YAG picosecond laser is most efective, and the Ruby nanosecond laser is the least efcient. Fragment compounds generated from the pigment and siloxanes are common to all treatments, whereas hydrocarbon emerge by a larger amount upon Nd:YAG nanosecond treatment. Fibres are formed upon picosecond treatments and when operating in array mode, and lamellae are achieved by Ruby nanosecond laser treatment. Residual particles suspensions are very heterogeneous upon nanosecond treatments

    Top-down N-doped carbon quantum dots for multiple purposes: heavy metal detection and intracellular fluorescence

    Get PDF
    In the present study, we successfully synthesized N-doped carbon quantum dots (N-CQDs) using a top-down approach, i.e., hydroxyl radical opening of fullerene with hydrogen peroxide, in basic ambient using ammonia for two different reaction times. The ensuing characterization via dynamic light scattering, SEM, and IR spectroscopy revealed a size control that was dependent on the reaction time, as well as a more pronounced -NH2 functionalization. The N-CQDs were probed for metal ion detection in aqueous solutions and during bioimaging and displayed a Cr3+ and Cu2+ selectivity shift at a higher degree of -NH2 functionalization, as well as HEK-293 cell nuclei marking

    Room temperature syntheses of ZnO and their structures

    Get PDF
    ZnO has many technological applications which largely depend on its properties, which can be tuned by controlled synthesis. Ideally, the most convenient ZnO synthesis is carried out at room temperature in an aqueous solvent. However, the correct temperature values are often loosely defined. In the current paper, we performed the synthesis of ZnO in an aqueous solvent by varying the reaction and drying temperatures by 10 ◦C steps, and we monitored the synthesis products primarily by XRD). We found out that a simple direct synthesis of ZnO, without additional surfactant, pumping, or freezing, required both a reaction (TP) and a drying (TD) temperature of 40 ◦C. Higher temperatures also afforded ZnO, but lowering any of the TP or TD below the threshold value resulted either in the achievement of Zn(OH)2 or a mixture of Zn(OH)2/ZnO. A more detailed Rietveld analysis of the ZnO samples revealed a density variation of about 4% (5.44 to 5.68 gcm−3 ) with the synthesis temperature, and an increase of the nanoparticles’ average size, which was also verified by SEM images. The average size of the ZnO synthesized at TP = TD = 40 ◦C was 42 nm, as estimated by XRD, and 53 ± 10 nm, as estimated by SEM. For higher synthesis temperatures, they vary between 76 nm and 71 nm (XRD estimate) or 65 ± 12 nm and 69 ± 11 nm (SEM estimate) for TP = 50 ◦C, TD = 40 ◦C, or TP = TD = 60 ◦C, respectively. At TP = TD = 30 ◦C, micrometric structures aggregated in foils are obtained, which segregate nanoparticles of ZnO if TD is raised to 40 ◦C. The optical properties of ZnO obtained by UV-Vis reflectance spectroscopy indicate a red shift of the band gap by ~0.1 eV
    corecore