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Abstract: Deep Eutectic Solvents have gained a lot of attention in the last few years because of their
vast applicability in a large number of technological processes, the simplicity of their preparation and
their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly
valuable is the synthesis and modification of inorganic materials—in particular, nanoparticles. In
this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which
has led to an increasing number of studies focusing on exploiting these new reaction media to
prepare nanomaterials. This review aims to provide a summary of the numerous and most recent
achievements made in this area, reporting several examples of the newest mixtures obtained by mixing
molecules originating from natural feedstocks, as well as linking them to the more consolidated
methods that use “classical” DES, such as reline.

Keywords: Deep Eutectic Solvents; nanoparticles; inorganic synthesis; environmentally friendly
media; biocompatibility; renewable feedstocks

1. Introduction

According to the general definition currently used (EU 2011), a “nanoparticle” (NP)
is a discrete (nano-)object where at least one of its characteristic dimensions falls in the
range 1–100 nm. This category thus includes objects with a fixed number of such dimen-
sions, such as nanowires/nanotubes (mono-dimensional, 1D) and nanodiscs/nanoplates
(2D), as well as nanometric spherical/globular three-dimensional aggregates. Nanopar-
ticles can be further classified according to their organic/inorganic nature. Dendrimers,
lyposomes, and polymeric NPs belong to the former group, whereas fullerenes, quantum
dots, and metal/metal oxide NPs to the latter [1,2]. Most importantly, nanomaterials are
classified according to their size, shape, and properties, and it is this last feature that has
led to the blossoming of nanomaterial research in the last few years. The remarkable
properties nanoparticles possess (e.g., optical, magnetic, and electrical) can be exploited
in a large number of technology-related fields, ranging from electronics [3,4] to biology
and medicine [5,6]. The correlation between size/shape and properties in nanomaterials
was thoroughly assessed in several investigations, and it was shown that their properties
were dramatically dependent on the shapes, dimensions, and porosities of the synthesized
nanoobjects; thus, a detailed control of the synthetic route is needed. The structural dif-
ferences observed ultimately result in remarkably different performances in real-world
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applications. Among the factors that can be controlled, the most easily tunable is probably
temperature. For instance, in the synthesis of metal oxides by the co-precipitation pathway,
the temperature at which the drying/calcination of the hydroxide is carried out can vary
widely. Despite its apparent “simplicity”, the effect of this variation can be quite relevant,
as was found, for instance, in the synthesis of nickel (II) oxide NiO, a prototypical p-type,
wide-band-gap semiconductor. NiO nanoparticles prepared at 400 ◦C are smaller and
more porous, while larger structures are obtained at 600 ◦C; the band gaps associated with
the latter are larger and the electrochemical performances worse, especially when these
nanoparticles are introduced into screen-printed electrodes (SPEs) and employed as electro-
chemical sensors for selective assays or in Faradic pseudo-capacitors. Other factors that
have been found to influence the intercalation of precursors and the sintering of particles,
the latter leading to particles of larger sizes, are the reagents used to prepare the precursor
hydroxide Ni(OH)2: the use of various combinations of nickel salts and inorganic/organic
bases as precipitating agents, and the adoption of surfactant-free hydrothermal synthesis
or microwave irradiation (which can lead to different results) [7–12].

In a large number of studies aiming to control the shape and dimensions of particles,
the use of templating agents has been investigated in more detail. Various types of systems
have been employed for this purpose, such as, for instance, boric, citric, and ascorbic
acids [13]; cholesteric liquid crystals [14]; and different types of surfactants [15]. Here, the
use of dendrimers such as poly(amidoamine) (PAMAM) is noteworthy, as it allowed the
production of very small NPs with dimensions as low as 1.4 nm [16]. In this contribution, we
focus our attention on a new class of environmentally friendly, inherently inhomogeneous,
and highly structured family of liquids, Deep Eutectic Solvents, which can naturally exert
a templating effect. The most recent developments in the field will be reviewed and
additional references will be provided, thus enlarging the literature coverage of the reviews
already published on this subject [17–20].

2. Brief Description of Deep Eutectic Solvents

Since the “official” birthday of this family of liquids, which can be traced back to the
pivotal paper by Abbott in 2003 [21], a fairly large amount of research has been dedicated
to them, especially in the last decade. The key feature of these solvents is their very easy
and economic preparation, which involves the simple mixing of at least one hydrogen
bond donor (HBD) with at least one hydrogen bond acceptor (HBA). In most cases, this
takes place in solid phase and in definite ratios, providing mixtures with remarkably lower
melting points than those of their individual components. The sometimes very large de-
crease seen in the melting temperature, which in the prototypical choline chloride:urea
1:2 system (“Reline”) [22] can be more than 100 ◦C with respect to the ideal value obtain-
able from thermodynamics arguments [23,24], has led to the term “deep” being used to
distinguish DESs from other non-ideal physical systems where similar phenomena are
observed—e.g., water–DMSO mixtures. Deep Eutectic Solvents were divided into four
main classes in the original classification by Abbott, three of which contain a halide anion
and a quaternary ammonium cation as HBA (in most cases, choline chloride), and differ
in their type of HBD: metal chloride in class I, hydrated metal chloride in class II, organic
molecules (such as urea, glycerol, and carboxylic acids) in class III (which is the most
populated), and metal halides and urea (or acetamide/ethylene glycol) in class IV. Recently,
a new class was introduced (“type V” [25]), containing only hydrogen-bond donors and ac-
ceptors and no ions. Other non-negligible valuable traits of Deep Eutectic Solvents are their
high sustainability, especially in the subfamily NaDES (Natural DES), where the precursors
are benign compounds generally obtained from natural feedstocks, such as choline chloride
and carboxylic acids; these therefore have a low toxicity and high biocompatibility and
biodegradability [26–28]. Additionally, DESs are characterized by their high conductivities,
viscosities, and surface tensions; have a low volatility and flammability; and have highly
tunable physiochemical properties, considering the large number of possible combinations
of precursor salts [29]. These last features are shared with ionic liquids (ILs), which can
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be considered as the forefathers of DESs. However, ILs are composed (almost entirely) of
ions [30,31], whereas DESs, apart from the type V ones, are mixtures that contain polar
molecules and ions. A sketch of the desirable technological properties of DESs is provided
in Figure 1.
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3. DES in Nanoparticle Synthesis from Their Birth to 2020

The investigation of the applicability of ILs and DESs in the field of nanoparticle
synthesis started with a focus on the former family, but the amount of research on DES has
been growing lately. In addition, some of the features characteristic of ILs can be extended
seamlessly to DESs. The most striking property of DESs in the field of nanoparticle synthesis
is the high solubility of metal ion salts and complexes in several cases. As already shown
by Abbott et al. [32], the solubility of some bulk metal oxides, which are almost insoluble
in pure water, is greatly increased in some DESs, reaching values of up to more than
10,000 parts per million in ChCl:malonic acid 1:1 at 50 ◦C for Cu2O, CuO, and ZnO, and
up to 90,000 ppm for ZnO in ChCl:urea 1:2 at 70 ◦C. In contrast, other oxides, such as
iron oxides, are barely soluble in ChCl:urea 1:2. This feature can be used, for instance,
to design suitable synthesis protocols based on fractional precipitation. Another key
factor is the possibility of these substances acting in a dual capacity as both solvents and
templates for nanostructure formation (“target solvent”) [33–37], owing to their structural
heterogeneity [38–41]. In several cases, DESs can behave as reactants as well [42–44].

The heterogeneity and microstructure of DESs have attracted great interest. The study
by Chen et al. [45] pointed out that in “reline” (ChCl:urea 1:2), “ethaline” (ChCl:ethylene
glycol 1:2), and “glyceline” (ChCl:glycerol 1:2 (the classification of this mixture as a DES
or as a salt-in-solvent system has recently been debated, and the data are in favor of a 1:3
composition defining a proper DES [46])), the charged and neutral portions of the mixtures
tend to separate when the liquid comes into contact with graphite electrodes, with choline
and chloride ions being attracted into the Stern layer, while the molecular components
are excluded at all the potentials scanned. Similar experiments carried out using Pt(111)
electrodes and the same three DESs were conducted at various potentials and at increasing
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water contents [47]. This study showed that the addition of water in amounts up to≈40 wt%
did not lead to the decomposition of the interfacial nanostructure, as observed in ILs even at
very small water contents. Yet, the cyclic voltammetry analysis reported in the same study
indicates that, at such high water concentrations, the nanostructure appears comparable
to that of salt solutions. The preservation of the microscopical structure upon hydration
was also demonstrated in a neutron diffraction study conducted by Hammond et al. [48],
who pointed out that the microscopic features of pure reline were maintained in a water to
DES molar ratio of up to 10:1 (around 42 wt% H2O); beyond that limit, the system can be
better described as a three-component HBA:HBD:water mixture. Marked heterogeneity
was evidenced as well in a molecular dynamics study conducted by Alizadeh et al. [34],
who reported the fate of ethaline’s polar and nonpolar molecular groups under electrostatic
potential. The calculations suggest that the DES reorganizes in order to maximize the
interactions between domains of the same polarity, thus inducing strong heterogeneity in
the system.

The oldest syntheses reported mainly concerned the preparation of noble metal
nanoparticles with a controlled shape; in most cases, these syntheses employed Abbot’s
DES reline [21]: catalysts containing star-like gold NPs were synthesized through the
reduction of HAuCl4 by L-ascorbic acid in DES without surfactants or seeds at room
temperature ([49], see Figure 2). The shape could be further changed (e.g., to a snowflake
or nanothorn) by adjusting the water content. Other noble metal NPS were prepared by
electrosynthesis methods: in this regard, DESs can be very valuable, since they possess very
wide electrochemical windows just slightly bit smaller than ILs which can be effectively
coupled to the large solubility of metal oxides to set up electrochemical cells for the deposi-
tion of metal nanoparticles, achieving very efficient control over the nucleation, deposition
rate, and size of the crystals obtained [50]. A further very important aspect of noble metal
deposition is that DES and ILs can substitute highly toxic cyanide-based electrolytes [51].
Among these examples, the preparation of concave tetrahexahedral Pt nanocrystals by
electrodeposition using reline without employing surfactants, seeds, or other chemicals
but with a high control of the shape and a high surface energy was reported [52]. Two-
dimensional superstructures of aggregated Pd nanoparticles were electrodeposited from
choline chloride:urea 1:2 onto glassy carbon foil, with the absorbed species forming an
anionic layer that was observed with Ultra Small X-Ray Scattering (USAXS) [53]. Platinum
icosahedral nanocrystals with high-index facets and a higher electrocatalytic activity and
stability were electro-synthesized in reline [54]. Further details on the role of Deep Eutectic
Solvents in the synthesis of plasmonic (Au, Ag, Pt) nanoparticles can be found in the
recent review of Des et al. [55], who also describe biocompatible capping strategies that
make use of polysaccharides (carrageenan), resulting in highly monodisperse nanoparticles.
Other non-electrochemical redox reactions were carried out using environmentally friendly
routes based on reline as a solvent: CuCl nanocrystal powder, which is a very useful
catalyst for organic synthesis, was obtained either through the synproportion of CuCl2
and Cu [56] or by the reduction of CuCl2 by ascorbic acid [57]. Additionally, spherical,
magnetic nanoparticles of ferrous ferrite (Fe3O4) were prepared at 80 ◦C and successfully
tested for the absorption of Cu2+ ions, proving to be superior to NPs prepared in pure
water [58]. Further examples of systems prepared in reline with co-precipitation are PbS
nano/micro superstructures made from lead (IV) and thioacetamide [59], mesoporous
NiO [60], and some examples of iono-thermal reactions at high temperatures/pressures
(nanoflower-like α-Ni(OH)2 and NiO [61], Ni2P supported on amorphous/mesoporous
Ni3(PO4)2-Ni2P2O7 [62], nanosized SnO crystals [63], Fe2O3 nanospindles as high-capacity
anode materials [64], mesoporous Co3O4 sheets or nanoparticles [65], and MnCO3/MnOx
mesocrystals [66]). An interesting example of an “antisolvent approach” is the synthesis of
ZnO nanocrystals doped with Cu(II) ions, which involves adding a controlled amount of
water to solutions of bulk ZnO in DES [67]. Few studies have employed DESs other than
reline; some noteworthy examples utilize ethylene glycol as the HBD partner of ChCl, the
latter being used to obtain nanocrystalline SnO2 or SnO2/graphene nanocomposites [68],
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nanoporous Ag films [69], and Ni-P alloy nanoparticles [70] to deposit Ni deposits [71],
Ni-Ti nanocomposite coatings [72], or Ag films [73]. In an interesting study by Mota-
Morales [74], the dispersant properties of DESs during the formation of nanoparticles
and other nanocomposites were exploited for the preparation of a microporous carbon
nanotube-polyacrylic acid composite using a ChCl:acrylic acid mixture. The latter DES was
also successfully employed as a functional monomer to create DES-levofloxacin-imprinted
Pd nanoparticles for the selective removal of pollutants from wastewater [75].
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More recently, the increasing need for even greener and more biocompatible alter-
natives has fostered the usage of new types of environmentally benign and low-cost
mixtures, mostly belonging to the NADES family (DESs of natural origin), where the
precursors are obtained from renewable feedstocks. For instance, Zainal-Abidin et al. re-
cently reported that graphene is significantly less cytotoxic when it is functionalized with
ChCl:glucose/fructose/sucrose) 2:1 or, better yet, ChCl:malonic acid 1:1, with respect to
pristine or oxidized graphene owing to surface modifications [76]. NADES mixtures con-
taining glucose, fructose, and sucrose as HBD, choline chloride, and water at different molar
ratios, were employed in the synthesis of MoS2 nanosheets by Mohammadpour et al. [77].
The material prepared was stable in aqueous environments, could perform as a catalyst in
hydrogen evolution reactions (HERs), and could be obtained in a higher yield compared to
other exfoliating agents (average of 44% vs. 20%). New mixtures created by changing the
HBA or HBD started to be explored in the last part of the 2010s: an interesting example of
those belonging to the second group is the synthesis of calcite nanoparticles by the reaction
of CO2 with “calcoline”, a DES composed of choline chloride and calcium chloride [78]. This
study demonstrates that DESs can be successfully exploited in “carbon-reduction” protocols,
leading to value-added products. A modification of the acceptor moiety (HBA) was used
by Adhikari et al., who reported the use of halide-free DES, where the Cl-anion of reline is
replaced by nitrate, for the microwave-assisted reduction of silver salts to organic-soluble
oleylamine-capped Ag nanoparticles [79]. Following on from this study, Adhikari et al.
later fine-tuned a silver-based DES (1:4 silver triflate:acetamide, “argentous DES”) that
allowed them to obtain large amounts of monodispersed colloidal silver nanocrystals of
high quality despite the high metal concentration, owing to the “size focusing” effect
of the DES that suppressed uncontrolled nanocrystal growth [80]. More recently, these
researchers exported their methodology to flow-reactor synthesis employing dimethylam-
monium nitrate-polyol DES media; they were able to obtain a 1000- to 4000-fold increase in
throughput compared to conventional synthesis [81]. Other noteworthy examples of HBA
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modifications include mixtures of non-quaternary cations, such as dimethylamine, ethy-
lamine, and trimethylamine hydrochlorides with urea, which have been successfully used
to synthesize a series of silver and selenido-stannate ([NH2(CH3)2]2Sn3Se7·0.5NH(CH3)2,
[NH4]2Sn4Se9, [NH3C2H5]2Sn3Se7, and [NH4]3AgSn3Se8) crystals through the solvother-
mal pathway. The ammonium cations originating from the original HBA as well as those
resulting from the decomposition of urea have been proven to be able to act as templat-
ing agents, leading to the establishment of three-dimensional supermolecular inorganic
frameworks that show the peculiar feature of thermochromism in some cases [82]. The use
of ammonium cations as hydrogen bonds, though very common and convenient, is not
the only option. In fact, other inorganic salts have recently been used. For example, ionic
compounds belonging to the alkali halide family have been proven to form polyol-based
DES mixtures (such as CsF/KF:glycerol) that have shown very high selectivities when used
as reaction media for copper-catalyzed homocoupling organic reactions [83].

Returning to DESs containing molecules of natural origin, a mixture of caffeic acid
with ChCl and ethyleneglycol was used to prepare moleculary imprinted hexagonal
boron nitride NPs, which were successfully employed in the solid-phase extraction of
flavonoids [84], while tartaric acid was used as a DES component in a recent electrodeposi-
tion preparation of a Ti/SnO2–Sb electrode with a high electrochemical activity [85].

In summary, the main advantages of DES that were readily highlighted shortly after
their introduction as synthesis media and that were largely demonstrated during this initial
time period lie in their friendliness towards ecosystems, their highly tunable physiochem-
ical properties, and their cheap means of preparation and handling. An additional very
important and profitable feature is their intrinsic microheterogeneity, with it being possible
to confer specific morphologies to the obtained nanoparticles. A possible drawback of the
use of DESs is their moderate viscosity, which depends on the nature of their components,
with the viscosity being lower for hydrophobic DESs and larger for sugar-based NADESs.
Indeed, it has been shown that the decrease in mass diffusivity caused by viscosity affects
nanoparticle growth and generally leads to NPs of a larger size [86].

4. Research on DES Blooms: From 2020 up to Now

The number of investigations on a multifaceted topic such as DES have increased
markedly in the last few years. The simple query “Deep Eutectic Solvents” in the title,
abstract, and keywords on Scopus database yielded 6474 results on 17 February 2022; a
more refined inquiry (“deep eutectic solvents” AND “nanoparticles”) on the same day led
to 343 results, 22 of which were published in the first fifty days of 2022. The full set of trends
discovered is shown below (Figure 3). During the last two years, research in this field
has continued in the direction of considering new eutectic mixtures that are often cheap
and biocompatible. The published studies include “wet chemistry” synthesis protocols
(i.e., synthetic routes not assisted by electrochemical methods or other instrumentations,
such as CVD; see Table 1 for a schematic report) as well as electrochemical deposition
methods, which have already been proven to be very efficient in producing several types of
nanoparticles. Among all the literature, although reline still plays an important role (since it
features in approximately one out of four studies (80/343) on both traditional liquid-phase
syntheses and electrodeposition), the interest in new methods has grown significantly and
NADESs are becoming more and more important every day. Among the newest and most
interesting investigations using “traditional” ChCl:urea, the latter DES was used: in the
field of metal oxides synthesis, to prepare nontoxic photoluminescent SnO nanoparticles
for cell imaging [87], in the solvothermal synthesis of iron oxide from iron monitored in
operando by SANS and EXAFS [88], in the synthesis of ceria nanoparticles in a continuous
microreactor [89], to conjugate Fe3O4 nanoparticles on graphene oxide [90], to obtain
NixCo2-x(OH)3Cl nanoparticles with an optimal Ni/Co ratio suitable for use as cathodic
materials [91], as a solvent and nitrogen source for preparing fluorescent carbon dots [92],
and for the synthesis of titanomagnetite NPs with enzyme-like activity [93]. Finally, reline
was also used very recently as a template to prepare polyacrylates/nanohydroxyapatite
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scaffolds and polycrystalline sub-nanometrical chalcogen nanoparticles (SeTe) with high
activity towards tumor cell lines [94].
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Regarding electrodeposition studies conducted in reline, several examples have been
published in the last two years: for instance, water-soluble magnetic iron oxide nanoparti-
cles were prepared at the anode during the electrolysis of reline using iron electrodes [95];
ruthenium nanoparticles were electrodeposited on stainless steel from a dichloride solu-
tion [96]; core–shell Pd-hydroxide NPs were obtained through the electrochemical oxidation
of formic acid [97]; Zn/ZnO nanopowders were electrodeposited over Pt electrodes elec-
trolyzing ZnCl2 solutions [98]; copper nanoparticles were obtained from CuCl2·H2O [99].
Some of the other “traditional” mixtures prepared in the first phase of DES development
together with reline—namely, ethaline (choline chloride-ethylene glycol) and glyceline
(choline chloride-glycerol)—have found a considerable number of applications recently.
Ethaline was used as a medium for the electrodeposition of Ni nanoparticles. It was, suitable
for the catalysis of methanol oxidation [100]; for the synthesis of NiS2 nanospheres [101];
and, very interestingly, for the modification of Fe2O3 NPs to produce very specific electro-
chemical sensors—for H2O2, acetylcholine and the antibiotic dapsone [102]. Furthermore,
ChCl:EG was used as a carrier and disperser for SiO2@Fe3O4 (silica-coated magnetite)
ferrofluids selective for Meloxicam [103], to electrodeposit Ni-Al nanocomposite coatings
from NiCl2 and aluminum dispersions [104], to synthesize platinum hollow-opened struc-
tures with enhanced performance in the electro-chemical oxidation of methanol [105], and
as a solvent for assembling Ag nanoparticles onto copper substrates [106]. Glyceline was
employed in the solvothermal preparation of functionalized metal-organic framework
(MOF) nanoparticles containing zirconium [107], to immobilize Pd nanoparticles [108],
and to deposit ZnO in situ on graphene sheets [109]. However, the real novelty of the
last period consisted, as stated above, in the very large increase in the use of many new
and alternative mixtures, often including biomolecules of natural origin. For instance, the
excellent capabilities of glycerol as hydrogen bond donor in DES were further enhanced by
the addition of malic acid and D-fructose in a 1:1:1: mole ratio (MaFruGly). MaFruGly was
used to disperse Al2O3 into a nanofluid that is capable of extracting polyphenols and other
bioactive compounds from olive oil pomaces and leaves [110]. Other examples of such bio-
compatible mixtures include choline chloride:glucose, which was used to prepare sodium
hyaluronate/dopamine/AgNPs hydrogels [111]; ChCl:xylitol, which was employed to
modify magnetic titania NPs with Fe3O4@TiO2@DES [112]; and choline chloride:gluconic
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acid DES, which was used to prepare a cobalt-DES precursor that was finally pyrolyzed
into Co nanoparticles supported on nitrogen-doped porous carbon (Co@NPC). The latter
acts as a bifunctional catalyst for water splitting (H2 production) and glucose oxidation
(GOR) in an electro-chemical cell [113]. Along the same line, carbon-doped copper ox-
ide catalysts with a high selectivity in CO2 electrochemical reduction were produced by
the calcination of sugar-urea DES (glucose:urea and galactose:urea) containing copper
salts [114]. Mixtures containing carboxylic acids have been described in several examples:
ChCl + oxalic acid and malonic acid, together with urea, fructose, and ethylene glycol, were
used to synthesize MgFe2O4 nanoparticles with a high sensitivity and selectivity towards
nitrofenantoine and 4-nitrophenol [115]. Pd nanoparticles confined in nanocellulose with
a high catalytic chemoselectivity and activity were prepared from choline chloride and
oxalic acid dihydrate 1:1 [116] (this mixture was also employed as a medium to synthesize
porous Fe3O4 nanosheets with high electrocatalytic performances starting from commercial
powders) [117]. An example of a mixture of choline and inorganic salts is choline:Na2SO3
2:1, a “reductant” solvent where sulfur-functionalized graphene oxide NPs for Li-S batteries
were synthesized using a chemical reduction/co-precipitation method [118].

A relevant portion of the recent studies on this topic has focused on magnetic nanopar-
ticles containing Fe3O4 (or Fe2O3) and organic moieties or enzymes, which could be
assembled in a few examples of DESs: acrylic acid-Fe3O4 composites were obtained from
acrylic acid:menthol-type V DES used in the detection of pesticides [119], whereas macrop-
orous polyacrylamide γ-maghemite composites were prepared in acetic acid:menthol [120].
Nano-Fe3O4 was prepared in NADES betaine-urea, coated with silicon, and success-
fully employed to immobilize β-glucosidase [121]. magnetite nanocubes with anticancer
and photo-Fenton efficacy were synthesized in ChCl:citric acid by Sakthi Sri et al. [122];
poly glycerol@Fe3O4 nanoparticles (as HBD) were treated with choline chloride, giving a
branched poly (DES)@ Fe3O4 fluid that was used as draw solute in forward osmosis [123],
whereas DES coupled to Fe3O4-MUiO-66-NH2 (a metal organic framework composed of
zirconia clusters cross-linked by terephtalic acid) obtained from mixtures of quaternary am-
monium salts different from choline, such as benzyltributylammonium chloride (BTBAC),
benzyltributylammonium bromide (BTBAB), tetrabutylammonium chloride (TBAC) as
HBA, and lactic or glycolic acid such as HBD was employed to adsorb pharmaceuticals and
personal care products (PPCPs). The magnetic nanoparticles could be easily separated and
recovered from the adsorbed species using a magnet [124]. Other examples of quaternary
ammonium salts include TBAB (tetrabutylammonium bromide), which was combined with
imidazole in a DES. The latter was employed as a solvent to immobilize Pd nanoparticles
onto a covalent organic framework, finally resulting in a heterogeneous catalyst used for
the phosphorylation of aryl bromides [125]. Furthermore, CTAB (cetyltrimethylammo-
nium bromide), which combines with acetic acid in a 1:1 mass ratio to create a liquid
mixture, was used for the formation of ceria nanoparticles with remarkable photocatalytic
activity by Iqbal and coworkers [126,127]. Other sugar-based DESs similar to those cited
above—namely, dl-menthol:oleyl alcohol 1:1.2—were employed to prepare an NDDES
(nano dispersed DES) mixture containing boron nitride nanoparticles, with excellent prop-
erties as a heat-transfer nanofluid [128]. A comprehensive survey on the use of DES as a
base fluid for heat-transfer nanofluids can be found in [29].
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Table 1. Recent examples of “wet syntheses” in DES media.

Solvent Reagents/Path Product References

ChCl:urea 1:2

Preparation of separate solutions of
HAuCl4·4 H2O (0.015 g) and L-ascorbic acid (LA,
0.05 g) in DES. Addition of LA solution to
HAuCl4 at 30 ◦C under magnetic stirring until
the color changes from yellow to dark purple

Au nanoparticles
Star, snowflake, or
nano-thorn-shaped depending on
water content

[49] (Figure 2)

Direct electrodeposition on GC substrate in
19.3 mM H2PtCl6/DESs solution at 80 ◦C

Tetrahexahedral (THH) concave
Pt NCs [52]

Triambic Icosahedral Pt NCs [54]

Mixing CuCl2·2H2O (5.0013 g, 0.0293 mol) and
Cu powder (1.6935 g, 0.0265 mol) with DES,
gentle stirring at 20 ◦C for 5 h, rinsing with
diluted HCl

CuCl nanocrystal powder [56]

Addition of 2.2232 g of CuCl2 2H2O and 1.3754 g
of ascorbic acid to 14 mL DES in the presence of
PVP, mild stirring at 25 ◦C for 1 h, rinsing with
50 mL HCl (0.1 M)

Spherical CuCl nanoparticles [57]

Addition of 2.164 g (8 mmol) FeCl3·6H2O and
1.194 g (6 mmol) FeCl2·4H2O to 15.585 g DES,
stirring at ca. 600 rpm and 80 ◦C for 20 min,
subsequent addition of 2.613 g (46.7 mmol) KOH,
and stirring for another 1.5 h at 80 ◦C.
Alternatively, see Figure 5 and last paragraph

Spherical, magnetic Fe3O4
nanoparticles

[58]; Figure 5 and
last paragraph

Solvent: 35.70 g of DES (30 mL at 37 ◦C) and
6 mL of water. Dissolution of thioacetamide (TH,
12 mmol, 0.9134 g) mL into 12 mL of solvent and
lead (IV) acetate (LAC, 12 mmol, 5.3206 g) into
the remaining liquid, stirring of both solutions at
80 ◦C. Injection of TH into LAC changes the
solution from pale yellow to opaque dark brown.
Rinsing with water, followed by dialysis,
centrifugation, and drying in furnace at
T ≤ 80 ◦C

Hyperbranched PbS
Nano/microcrystals [59]

Heating of NiCl2·6H2O in DES (0.1 M solution)
at 150 ◦C for 40 min; then addition of 10 mL of
water and further stirring for 20 min, cooling in
ice bath; drying of precursor overnight at 90 ◦C
and further annealing in air (300 ◦C) for 4 h

Mesoporous NiO [60]

NiCl2·6H2O in DES ionothermal reactions at
different temperatures and conditions

Ni(NH3)6Cl2, NiCl2 and
nanoflower-like α-Ni(OH)2
and NiO

[61]

Dissolution of 5.94 g of Ni(H2PO2)2·6H2O
(0.02 mol) and 1.66 g of NH4H2PO2 (0.02 mol) in
27.92 g (0.2 mol) of choline chloride and 24.02 g
(0.4 mol) of urea, stirring at 323 K under N2 for
30 min, reduction of product with H2 at 673 K
for 3 h

Ni2P supported on
amorphous/mesoporous
Ni3(PO4)2-Ni2P2O7

[62]

Emulsion of 2.25 g SnCl2·2H2O in 100 mL DES.
Variable reaction times (1 to 60 min)

Nano-sized SnO particles
(20–30 nm) [63]

Heating of 40 mL of 0.1 M FeCl3·6H2O/DES
solution at 200 ◦C, after 10 min. addition of
40 mL of water and further reaction for 10 min.
Washing of precipitate with ethanol and dried at
80 ◦C overnight

Fe2O3 nanospindles [64]
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Table 1. Cont.

Solvent Reagents/Path Product References

ChCl:urea 1:2

Dissolving CoCl2·6H2O into ChCl to obtain a
0.1 M CoCl2:ChCl solution, addition of 100 mL
of water after heating for 40 min at different
temperatures. Subsequent ice bath cooling,
rinsing of product with water and methanol, and
drying at 70 ◦C under vacuum

Mesoporous Co3O4 sheets or
nanoparticles [65]

DES solution of bulk ZnO.
Precipitation with water (anti-solvent approach)

ZnO nanocrystals doped with
Cu(II) ions [67]

Dissolution of SnCl2·2H2O in DES, stirring in
pre-heated water bath (50, 80, 98 ◦C),
precipitation with ethanol, and drying at 230 ◦C

SnO2 nanoparticles [68]

Mixing of y mmol NiCl2 6H2O and 20-y mmol
CoCl2 6H2O (y = 0, 2.5, 5, 10) in 10 mL DES.
Addition of 1 mmol SDS and 20 mL water,
heating for 12 h at 100 ◦C, washing of precipitate
with water and ethanol

NixCo2-x(OH)3Cl [91]

Stirring of 1.668 g (0.006 mol) FeSO4·7H2O and
0.584 g (0.010 mol) of KOH 0.408 g in DES for
30 min, addition of 0.408 g (0.0012 mol)
tetrabutyl titanate (TBOT) and 0.420 g (0.008 mol)
of KOH, stirring first at 80 ◦C (30 min) and then
at 110 ◦C (4 h), washing of precipitate with water
and ethanol

Fe2.5Ti0.5O4-DES nanoparticles [93]

ChCl:urea 1:2
ChCl:urea:water
1:2:10

Hydrothermal treatment of
Fe(NO3)3·9H2O/DES mixtures (dry and
hydrated DES) for 3–8 h at 90 ◦C before particles
are dried at 60 ◦C from ethanol after dialysis

FeO [88]

Dissolution of Ce(NO3)3·6 H2O in DES and
stirring at 250 rpm for 40 min, reaction in
pressurized continuous microreactor at
100–160 ◦C, washing of the solid product with
water and ethanol and drying at 80 ◦C

CeO2 [89]

(CH3)NH2 HCl:urea
1:1.5

Mixture of Sn (0.119 g, 1.0 mmol), Se (0.211 g,
2.67 mmol), dimethylamine hydrochloride
(0.58 g, 7.1 mmol), urea (0.64 g, 10.67 mmol), and
0.3 mL of N2H4·H2O (98%) (∼6.17 mmol),
hydrothermal synthesis at 160 ◦C (3 h), rinsing
with water

Silver and selenido-stannates
[NH4]3AgSn3Se8 [NH4]2Sn4Se9
[NH3C2H5]2Sn3Se7

[82]

ChCl:oxalic acid 1:1

Dissolution of 30 mg of commercial Fe3O4 in
1 mL ChCl/OA DES at 50 ◦C by ultrasonic
treatment, microwave heating for 10 s at 100 W,
further thermal treatment at 300 ◦C for 2 h

Fe3O4 nanosheets [117]

Addition of MgO and α-Fe2O3 to DES molar
ratio 1:1 (0.5 wt% melt in the overall amount of
metal oxides), stirring for 1 h, then calcination of
melts at 500 ◦C for 1 h (5 ◦C min–1 heating rate)

MgFe2O4 nanoparticles [115]

ChCl:acrylic acid

Stirring of ChCl and MAA in the molar ratio 1:2
at 80 ◦C; mixing with a porogen (MeOH),
initiator (AIBN), crosslinking agent (EGDMA),
and template (levofloxacin); heating at 60 ◦C for
12 h; removal of template by Soxhlet extraction
with methanol

Levofloxacin-imprinted Pd
nanoparticles [75]
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Table 1. Cont.

Solvent Reagents/Path Product References

ChCl:oxalic
acid:water 1:1:1

Mixing of cellulose pulp (0.5 g) with DES (10 g)
and water (10 g), heating at 110 ◦C for 2 h in a
Teflon-lined reactor to obtain carboxylic cellulose
(CNF). Addition of 10 mL of PdCl2 (17.7 mg) in
HCl and aqueous NaBH4 (10 mg, 1 mL) to a
diluted CNF suspension (20 mL, 0.4 wt%),
reaction at 4 ◦C for 4 h, separation of Pd NPs
by dialysis

Pd nanoparticles confined in
nanocellulose [116]

ChCl:ethylene
glycol 1:2

Mixing of NiSO4·6H2O (0.1 M), Na2S2O3·5H2O
(0.1 M), EDTA (0.06 M), and DES in a beaker at
different temperatures (80 ◦C, 100 ◦C, 110 ◦C,
120 ◦C, 160 ◦C); stirring of the mixtures for 3 h;
washing of the solids with water and ethanol;
and drying at 60 ◦C

NiS2 nanospheres [101]

Dissolution of 4.0 mg of Pt(acac)2, 40 mg PVP,
and 25 mg of SDS in 8 mL DES; heating in oil
bath at 130 ◦C for 2 h; washing of the black
precipitate with ethanol

Pt hollow-opened structures [105]

ChCl:glycerol 1:2

Hydrothermal heating of ZrCl4, BDC (1,4
benzene dicarboxylate), H2O, and DES at a
molar ratio of 1:1:1:500 at 120 ◦C for 48 h;
washing of the solid with water

Nanoparticles containing ZrCl4 [107]

Mixing 2.19 g of Zn(CH3COO)2·2H2O and 0.2 g
of graphene in 50 mL DES, precipitation with
0.8 g NaOH

ZnO in situ on graphene sheets [109]

ChCl:CaCl2 1:2

CO2 capture from air of CaCl2·6H2O and choline
chloride DES at 50 ◦C under stirring at 400 rpm,
formation of CaCO3 sediment after 6 h, washing
of the sediment with water, drying at 60 ◦C for
12 h, reuse of the filtrate for further CO2 capture

CaCO3 NPs [78]

ChCl:glucose/fructose/
sucrose/maltose/
raffinose

Liquid-phase exfoliation of MoS2 in glucose,
fructose, sucrose, raffinose, maltose, choline
chloride, and water DES at various ratios (5 mg
MoS2 per mL of DES); separation of exfoliated
material in ethanol/water

MoS2 nanosheets [77]

CHCl:glucose

DASH: Dopamine hydrochloride (DA),
N-Hydroxysuccinimide (NHS),
1-ethyl-3-(3-(dimethylamino)propyl)
carbodiimide (EDC), sodium hyaluronate (SH)
in 2-(N-morpholino) ethanesulfonic
acid-buffered solution (MES buffer). Addition of
AgNO3 to DES-DASH 4:175 mixture

Na hyaluronate/dopamine/Ag
NPs hydrogels [111]

ChCl:xylitol 1:1

Mixing 0.2 g Fe3O4@TiO2 nanoparticles and
3.0 mL [ChCl][Xyl] by ultrasonication for 2 h,
separation by external magnet, rinsing
with water

Fe3O4@TiO2@DES [112]

ChCl:gluconic acid

Mixing 2 g choline chloride, 4 g urea, and 0.4 g
Co(NO3)2·6H2O in 5.62 mL of 50% gluconic acid
solution; calcination in N2 at 700–900 ◦C after
freeze-drying

Co@NPC [113]
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Table 1. Cont.

Solvent Reagents/Path Product References

CHCl:citric acid 2:1

Addition of 3.9813 g FeCl2 4H2O (20 mM) and
8.1091 g of FeCl3.6H2O (30 mM) at the molar
ratio 1:1.5 to DES, stirring at 80 ◦C (600 rpm) for
20 min, addition of 40 g (712.94 mM) KOH,
stirring for another 1 h, washing with ethanol
and water

Fe3O4 nanocubes [122]

Betaine-urea 1:2

DES: betaine (2.343 g) and urea (2.4 g), heating
for 15 min at 125 ◦C, addition of 1.5 mL water,
dissolution of 0.111 g FeSO4·7H2O (0.4 mmol)
and 0.216 g FeCl3·6H2O (0.8 mmol) in DES at RT
under stirring (10 min), precipitation by the
addition of 0.2 g of KOH (3.5 mmol), separation
with external magnet, and washing with water

Nano-Fe3O4
Nano-Fe3O4@SiO2–NH2

[121]

BTAB/BTBAC/
TBAC:lactic acid

[BTBAC][Lac]-DES: Mixing 3.12 g BTBAC and
1.80 g Lac at a molar ratio 1:2 under heating at
80 ◦C in oil bath for 1 h. Addition of 2.0 mL DES
to a phosphate buffer (20 mM, pH = 7.0)
containing 0.24 g of NHS and 0.16 g of EDC·HCl
to activate the carboxyl group of DES;
subsequently, the addition of 0.20 g
MUiO-66-NH2, stirring for 12 h, washing of
particles with water, and freeze-drying

Fe3O4-MUiO-66-NH2 [124]

TBAB:imidazole

Condensation of TFPT (main building block) and
hydrazine (comonomer) in BuN4Im/Br at 90 ◦C
for 12 h, subsequent impregnation with
Pd(oAC)2 under reflux

Pd@MOF [125]

CTAB:acetic acid 1:1

Mixing cetyltrimethylammonium and acetic acid
at 70 ◦C for 3 h. Addition of 1 g ammonium
cerium (IV) nitrate to 0.5 g of DES and
hydrothermal treatment of the solution at 130 ◦C
for 7 h. For N-doping, a urea solution
(10 g/30 mL of water) is added, followed by the
separation of particles by centrifugation and
washing with ethanol and acetone

Plain and N-doped CeO2 [126,127]

dl-menthol:oleyl
alcohol 1:1.2

Mixing 1 mol D,L-menthol and oleyl alcohol at
343.15 K under stirring for 12–24 h. Addition of
h-BN nanoparticles at different weight
percentages, shaking, and sonication for 2 h

BN nanoparticle nanofluid [128]

Acetic acid:menthol
1:2 pyruvic
acid:menthol 1:1
lactic acid:menthol
1:2 lauric
acid:menthol 2:1

Mixing of D,L-menthol with PA, AA, LacA, or
LauA at 50 ◦C for 15 min before drying under
vacuum (10−1 Pa). Preparation of
high-internal-phase emulsions (HIPEs) by
dropping DES into a continuous phase of
AAm:BAAm
(acrylamide:N,N′-Methylenebis(acrylmide),
polymerization with potassium persulfate (KPS),
and coating with γ-Fe2O3

Polyacrylamide γ-maghemite
composites [120]

Acrylic acid:mentho
1:2

Mixing AA and menthol at 70 ◦C in a water bath
for 5 min, polymerization of DES via a thermal
frontal method usingFe3O4 NPs-AA as a
cross-linker and thermal initiator into a magnetic
poly (AA-menthol DES) hydrogel

Acrylic acid:Fe3O4 composites [119]



Molecules 2022, 27, 2045 13 of 21

Table 1. Cont.

Solvent Reagents/Path Product References

Choline:Na2SO3 2:1

Heating of 7.0 g of choline chloride and ∼4.0 g
NaS2O3 in 2:1 molar ratio at 40 ◦C for 3 h.
Addition of 16 mL DES to a GO solution in the
presence of hydrazine as a reducing agent,
co-precipitation of reduced GO and sulfur

Sulfur-functionalized graphene
oxide NPs [118]

Dimethylammonium
nitrate:triethylene/
ethylene glycol, or
glycerol 1:1

HBA: Addition of 119.4 mL of 5.0 N HNO3
solution (0.597 mol) to aqueous dimethylamine
(40 wt% in H2O, 0.597 mol).
HBD: triethylene glycol, ethylene glycol, or
glycerol. Addition of HAuCl4 or AgNO3 and
oleylamine (OAm) (reducing agent) in each DES
under stirring (150 rpm); heating at different
temperatures (12 h at 60 ◦C for Ag, 19 min.
140–170 ◦C for Au)

Ag or Au colloidal nanocrystals [81]

5. Lewis Acid DES (LADES)

A smaller number of studies were dedicated to DES without quaternary ammonium
salts, containing metal salts (often hydrated) such as HBA and hydrogen bond donors such
as urea or acetamide. This family of DES is known as LADES (Lewis Acid DES)) [129], com-
pared to the more common “BADES” (with Brønsted acids, such as choline chloride + oxalic
acid). According to the Abbot classification, LADES belong to Type I, II, or IV DES (such as,
for instance, ChCl:2ZnCl2, ChCl:2CrCl3·6H2O, ZnCl2:urea 1:3.5 (or:4) melts), as do several
amide-nitrate eutectics [130] (such as LiNO3:acetamide 22:78 eutectic, which was recently
described as a valuable medium for electrochemical capacitors [131]) and the DES mixture
already described (silver triflate:acetamide [79]), while Type III DES can form only BADES.
The existence of these non-conventional melts was quite recently discussed regarding the
preparation or modification of inorganic nanoparticles. These DES include chloride salts,
which have been employed in three different preparations of titania-based nanomaterials:
the nano-photocatalyst n-TiO2-P25@TDI@DES, which is highly recyclable and selective, was
obtained by combining TiO2-P25 powder (70% anatase, 30% rutile) with a ZnCl2:urea 1:4
mixture using 2,4-toluene diisocyanate (TDI) as a bifunctional covalent linker. The nanocat-
alyst was employed successfully in the oxidation of benzyl alcohols to aldehydes and
sulfides to sulfoxides [132,133]; the synergy between LADES and NPs was also exploited
in the coupling between “Hierarchical TiO2” (H-TiO2) microspheres and FeCl2/CuCl2 urea
in 1:4 mixtures to increase the reaction yields in the preparation of pyrrolidyn-2-one hetero-
cycles [134] and by grafting the ZnCl2:urea 1:4 mixture onto magnetic ferrite nanoparticles
to generate a DES@MNP homogeneous catalyst (which was found to be “magnetically
recyclable” at the end of one-pot multicomponent syntheses [135]). Coming back to the
synthesis of the nanoparticles themselves, some lanthanide-based type IV DES (Ln-DES)
containing hydrated nitrates were prepared [136]. These mixtures show unusually low
viscosity and surface tensions and the presence of fluxional oligomeric polyanions and
polycations, and were employed as reaction media in the combustion synthesis of oxides;
more recently, actinide-based type IV DES (An-DES) were obtained by mixing uranyl ni-
trate hexahydrate UO2(NO3)2·6H2O (UNH) with urea in different ratios (Figure 4), finding
0.2:0.8 to be the optimal UNH:urea mole fraction, with a quite low eutectic temperature of
−5.2 ◦C. This liquid was employed to prepare UO2 nanoparticles through an optimized
electrosynthesis path [137]. Some examples of reactions in LADES are given in Table 2.
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Aside from metal nanoparticles, DES are finding wide application nowadays in the pro-
duction of lignin and cellulose nanoparticles. A basic knowledge of this widely investigated
topic, though not closely related to the focus of this article, can help in showing further ex-
amples of eutectic mixtures, particularly the newest natural biocompatible ones, that could
somehow be adapted and employed for the synthesis of systems containing metals. Among
the most recent examples worth mentioning are mixtures of choline chloride:glycerol (or
ethylene glycol) with AlCl3 [138]; choline chloride with ethanolamine or polyvinyl alco-
hol [139,140]; and choline chloride coupled with carboxylic acids (such as oxalic or lactic
acid [141]) or with inorganic salts (Gly-K2CO3) [142]), DES lactic acid-betaine [142], and
menthol-based melts (e.g., menthol:dodecanoic acid [143]).

Table 2. Examples of reactions in type IV DES (LADES).

Solvent Reagents/Path Product References

Lanthanide nitrate
hydrate:urea 1:3.5

Mixing of cerium (III) nitrate
hexahydrate, neodymium(III) nitrate
hexahydrate, or praseodymium(III)
nitrate with urea at various ratios;

preferred ratio is 1:3.5

Lanthanide oxides CeO2,
Pr6O11, NdO3 + mixed

carbonates
[140]

UNH(UO2(NO3)2·6H2O):urea
at various ratios

Mixing of UNH:urea at ratios 0.9:0.1,
0.8:0.2, 0.75:0.25, 0.6:0.4, 0.5:0.5, 0.33:0.67,
0.2:0.8, 0.1:0.9. Melting point of −5.2 ◦C

for the 0.8:0.2 mixture

UO2 NPs [141]

ZnCl2:urea 1:4

DES: Urea (20.0 mmol, 1.200 g) and zinc
chloride (5.0 mmol, 0.680 g). Covalent

bonding of TiO2 to DES through
2,4-toluene diisocyanate (TDI).

Dispersion of 0.5 g of TiO2@TDI NPs in
DES with stirring at 100 ◦C for 18 h;
washing with ethanol and drying at
60 ◦C under reduced pressure for 6 h

Ti@DES nanocatalyst [136,137]

6. A Prototypical Synthesis

In order to show the potential and ease of obtaining inorganic nanoparticles in DES,
we show a prototypical NP synthesis carried out in DES in the following paragraph. In
particular, the co-precipitation of the mixed salt Fe3O4 (structurally FeO·Fe2O3) from Fe2+

and Fe3+ soluble salt solutions in Choline-Urea 1:2 DES (reline) upon the addition of sodium
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hydroxide will be shown. The procedure was first reported in [56] and was modified for
this test preparation according to the following protocol:

(a) Preparation of DES

Totals of 11.108 g of dry choline chloride (MM = 139.62, 80 mmoles) and 9.610 g of
urea (MM = 60.06, 160 mmoles) were weighted separately and kept in closed containers.
The two solids were then mixed in a sealable vial at room temperature. Quite rapidly, the
two solids when put in contact formed a sluggish agglomerate that became more fluid and
transparent with gentle heating (35–40 ◦C); see Figure 3, first panel.

(b) Preparation of the solution

Totals of 0.130 g of FeCl3 (0.8 mmoles) and 0.167 g of FeSO4·7 H2O (0.6 mmol) were
weighed and added to 1.559 g of the prepared DES in a 25 mL beaker. The dissolution
was accelerated by heating the mixture at 80 ◦C, resulting in an orange transparent liquid;
see Figure 5, second panel. The total amount of water introduced into the system (by
counting the hydration water molecules coming from FeSO4 and estimating those coming
from the average absorbed water content of the two DES precursors (ChCl and urea) by
weighing samples of the powders before and after a three day-long drying treatment at
50 ◦C in an oven) was well below the upper limit (10 moles of water per mole of DES),
as identified in the neutron diffraction study by Hammond et al. [48], beyond which the
microscopic features of pure reline were lost and the system turned into a three-component
HBA:HBD:water mixture.
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Figure 5. Demonstrative synthesis of magnetite nanoparticles. From left to right: Choline-Urea 1:2
DES forming at 35 ◦C; FeCl3 and FeSO4 salts dissolved in Choline-Urea 1:2 at 80 ◦C; Fe3O4 precipitate
is formed on the addition of solid NaOH; after washing with water and drying at 40 ◦C, a magnetic
solid bead is obtained.

(c) Precipitation

A total of 0.187 g of NaOH (previously powdered in an agate mortar, 46.7 mmol) was
added to the solution at 80 ◦C under magnetic stirring (600 rpm). After 20 min, a black
precipitate formed; see Figure 5, third panel. The precipitate was washed with 20 mL of
distilled water four times and centrifuged for 5 min at 3000 rpm after each rinse cycle. The
excess of DES crystallized upon contact with cold water but was gradually solubilized. The
final pH after the washing was around 7, signaling that the excess amounts of NaOH and
urea had been washed out.

(d) Drying

The washed precipitate was collected from the vial, dried at 40 ◦C and finally rolled
into a bead. The bead was put into an Eppendorf tube, and its ferromagnetism was
qualitatively tested with a magnetic stir bar (Figure 5, fourth panel)
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7. Conclusions

In this small contribution, an overview of the newest and most important features of
Deep Eutectic Solvents in the field of nanoparticle synthesis is given. We demonstrate that
these mostly benign and inexpensive reaction media can be employed in different types of
wet synthesis, as well as in electrochemical preparations. The reported reaction schemes are
often straightforward and do not require complicated set-ups or equipment. The inherent
inhomogeneity of the liquid mixtures exerts a direct templating effect without the use of
any additives, and nanosystems of different topologies/shapes can be obtained. This field
is being actively developed, as seen by the ever-increasing number of articles published,
and its huge potential will surely continue to be explored, in search of new materials with
beneficial technological properties.
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