819 research outputs found
Signatures of the Milky Way's Dark Disk in Current and Future Experiments
In hierarchical structure formation models of disk galaxies, a dark matter
disk forms as massive satellites are preferentially dragged into the disk-plane
where they dissolve. Here, we quantify the importance of this dark disk for
direct and indirect dark matter detection. The low velocity of the dark disk
with respect to the Earth enhances detection rates in direct detection
experiments at low recoil energy. For WIMP masses M_{WIMP} >~ 50 GeV, the
detection rate increases by up to a factor of 3 in the 5 - 20 keV recoil energy
range. Comparing this with rates at higher energy is sensitive to M_{WIMP},
providing stronger mass constraints particularly for M_{WIMP}>~100 GeV. The
annual modulation signal is significantly boosted by the dark disk and the
modulation phase is shifted by ~3 weeks relative to the dark halo. The
variation of the observed phase with recoil energy determines M_{WIMP}, once
the dark disk properties are fixed by future astronomical surveys. The low
velocity of the particles in the dark disk with respect to the solar system
significantly enhances the capture rate of WIMPs in the Sun, leading to an
increased flux of neutrinos from the Sun which could be detected in current and
future neutrino telescopes. The dark disk contribution to the muon flux from
neutrino back conversion at the Earth is increased by a factor of ~5 compared
to the SHM, for rho_d/rho_h=0.5.Comment: 5 pages, 7 figures, To appear in the proceedings of Identification of
Dark Matter 2008 (IDM2008), Stockholm, 18-22 August 2008; corrected one
referenc
Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
A low-background germanium spectrometer has been installed and is being
operated in an ultra-low background shield (the Gator facility) at the Gran
Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16
events/min in the energy range between 100-2700 keV, the background is
comparable to those of the world's most sensitive germanium detectors. After a
detailed description of the facility, its background sources as well as the
calibration and efficiency measurements are introduced. Two independent
analysis methods are described and compared using examples from selected sample
measurements. The Gator facility is used to screen materials for XENON, GERDA,
and in the context of next-generation astroparticle physics facilities such as
DARWIN.Comment: 14 pages, 6 figures, published versio
Signatures of Dark Matter Scattering Inelastically Off Nuclei
Direct dark matter detection focuses on elastic scattering of dark matter
particles off nuclei. In this study, we explore inelastic scattering where the
nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt
de-excitation. We calculate the inelastic structure factors for the odd-mass
xenon isotopes based on state-of-the-art large-scale shell-model calculations
with chiral effective field theory WIMP-nucleon currents. For these cases, we
find that the inelastic channel is comparable to or can dominate the elastic
channel for momentum transfers around 150 MeV. We calculate the inelastic
recoil spectra in the standard halo model, compare these to the elastic case,
and discuss the expected signatures in a xenon detector, along with
implications for existing and future experiments. The combined information from
elastic and inelastic scattering will allow to determine the dominant
interaction channel within one experiment. In addition, the two channels probe
different regions of the dark matter velocity distribution and can provide
insight into the dark halo structure. The allowed recoil energy domain and the
recoil energy at which the integrated inelastic rates start to dominate the
elastic channel depend on the mass of the dark matter particle, thus providing
a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One
figure added; supplemental material (fits to the structure functions) added
as an Appendi
A scheme for the extraction of WIMP-nucleon scattering cross sections from total event rates
We propose a scheme that allows to analytically determine the three
elementary cross sections and connect the solutions to the relative sign
between the proton and the neutron spin scattering amplitudes once the
measurements of total event rate from three appropriate targets become
available. In this way it is thus possible to extract the maximum information
on the supersymmetric parameter space obtainable from direct detection
experiments, in the case that the dark matter particle is the lightest
neutralino. Our scheme is based on suitably normalized form of the isospin
momentum dependent structure functions entering in the spin-dependent elastic
neutralino-nucleus cross section. We compare these functions with the commonly
used ones and discuss their advantages: in particular, these allow in the
spin-dependent cross section to factorize the particle physics degrees of
freedom from the momentum transfer dependent nuclear structure functions as it
happens in the spin-independent cross section with the nuclear form factor.Comment: 8 pages, 4 figures. Title, text and references revised and expanded.
Added an Appendix explaining the advantages of the normalized spin structure
functions. Accepted in PR
Measuring a Light Neutralino Mass at the ILC: Testing the MSSM Neutralino Cold Dark Matter Model
The LEP experiments give a lower bound on the neutralino mass of about 46 GeV
which, however, relies on a supersymmetric grand unification relation. Dropping
this assumption, the experimental lower bound on the neutralino mass vanishes
completely. Recent analyses suggest, however, that in the minimal
supersymmetric standard model (MSSM), a light neutralino dark matter candidate
has a lower bound on its mass of about 7 GeV. In light of this, we investigate
the mass sensitivity at the ILC for very light neutralinos. We study slepton
pair production, followed by the decay of the sleptons to a lepton and the
lightest neutralino. We find that the mass measurement accuracy for a few-GeV
neutralino is around 2 GeV, or even less if the relevant slepton is
sufficiently light. We thus conclude that the ILC can help verify or falsify
the MSSM neutralino cold dark matter model even for very light neutralinos.Comment: 7 pages, 1 figure; references adde
Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels
Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges
Hot and Cold Dark Matter Search with GENIUS
GENIUS is a proposal for a large volume detector to search for rare events. An array of 40-400 'naked' HPGe detectors will be operated in a tank filled with ultra-pure liquid nitrogen. After a description of performed technical studies of detector operation in liquid nitrogen and of Monte Carlo simulations of expected background components, the potential of GENIUS for detecting WIMP dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar neutrinos is discussed
High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism
Nuclear recoil measurements with high-purity Germanium detectors are very
promising to directly detect dark matter candidates. The main background
sources in such experiments are natural radioactivity and microphonic noise.
Digital pulse shape analysis is an encouraging approach to reduce the
background originating from the latter. To study the pulse shapes of nuclear
recoil events we performed a neutron scattering experiment, which covered the
ionization energy range from 20 to 80 keV. We have measured ionization
efficiencies as well and found an excellent agreement with the theory of
Lindhard. In a further experiment we measured pulse shapes of a radioactive
gamma-source and found no difference to nuclear recoil pulse shapes. Pulse
shapes originating from microphonics of a HPGe-detector are presented for the
first time. A microphonic noise suppression method, crucial for dark matter
direct detection experiments, can therefore be calibrated with pulse shapes
from gamma-sources.Comment: 11 pages (latex) including 6 postscript figures and 2 table
Hot and Cold Dark Matter Search with GENIUS
GENIUS is a proposal for a large volume detector to search for rare events.
An array of 40-400 'naked' HPGe detectors will be operated in a tank filled
with ultra-pure liquid nitrogen. After a description of performed technical
studies of detector operation in liquid nitrogen and of Monte Carlo simulations
of expected background components, the potential of GENIUS for detecting WIMP
dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar
neutrinos is discussed.Comment: 11 pages, latex, 3 eps figures, requires svmult.cls. To appear in:
Proceedings of "Sources and detection of dark matter in the Universe", Marina
del Rey, CA, February 23-25, 2000, Springer 2000, edited by D. Clin
- …