4 research outputs found

    Ultrastructure of macromolecular assemblies contributing to bacterial spore resistance revealed by in situ cryo-electron tomography

    Get PDF
    Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins

    Ultrastructural details of resistance factors of the bacterial spore revealed by in situ cryo-electron tomography

    No full text
    The bacterial spore owes its incredible resistance capacities to various molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography (cryo-ET) on bacteria lamellae generated by cryo-focused ion beam micromachining (cryo-FIBM) provides insights into the ultrastructural organization of Bacillus subtilis sporangia, including that of the DNA and nascent coat layers. Analysis of the reconstructed tomograms reveal that rather early during sporulation, the chromosome in the developing spore (the forespore) adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a complex stack of amorphous or structured layers with distinct electron density, dimensions and organization. We investigated the nature of the nascent coat layers in various mutant strains using cryo-FIBM/ET and transmission electron microscopy on resin sections of freeze-substituted bacteria. Combining these two cellular electron microscopy approaches, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of the morphogenetic proteins SpoIVA, SpoVID, SafA and/or CotE. Significance statement Bacterial spores are dormant cells that can resist to multiple stresses, including antibiotics, detergents, irradiation and high temperatures. Such resilience is an asset when spores are used for the benefit of humans, as in the case of probiotics, or a major problem for public health, food safety or biowarfare when it comes to spores of pathogenic bacteria. In this study, we combined state-of-the-art cryo-electron tomography and conventional cellular electron microscopy to provide insights into intermediate stages of spore development. Our data reveal the intracellular reorganization of the chromosome into a toroidal fibrillar structure and the complex assembly of the multi-protein, multilayered extracellular coat, shedding light on the mechanisms by which the spore acquires its incredible resistance capacities

    Sequencing intact membrane proteins using MALDI mass spectrometry

    No full text
    Membrane proteins are key players in many cellular events and represent crucial drug targets. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a valuable approach to investigate them. To our knowledge, there are only a few reports of sequencing small membrane proteins using MALDI in-source decay (ISD). We report the successful fragmentation and sequencing of membrane proteins up to 46 kDa by MALDI-ISD. We have 1) investigated key MALDI parameters that influence the sequencing of a soluble protein; 2) used atomic force microscopy to observe our samples and correlate their topological features with MALDI data, which allowed us to optimize fragmentation conditions; 3) sequenced N- and C-termini of three membrane proteins (SpoIIIAF, TIM23, and NOX), solubilized in three different ways. Our results indicate that detergent and buffer type are of key importance for successful MALDI-ISD sequencing. Our findings are significant because sequencing membrane proteins enables the unique characterization of challenging biomolecules. The resulting fragmentation patterns provide key insights into the identity of proteins, their sequences, modifications, and other crucial information, such as the position of unexpected truncation

    Chromosome segregation and peptidoglycan remodeling are coordinated at a highly stabilized septal pore to maintain bacterial spore development

    No full text
    Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development
    corecore