95 research outputs found

    Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird

    Get PDF
    While the principal use of light-recording geolocators is to determine geographical locations of migratory birds, supplementary wetness data have been used to refine estimates of minimum flight duration, on the assumption that a wet logger indicates the bird is on the ground. We provide a test of this assumption, by comparing wetness values against directly observed migratory departures of logger-equipped Bar-tailed Godwits Limosa lapponica and Red Knots Calidris canutus from the Manawatu River Estuary, New Zealand. Loggers recorded wetness every 10 min (Biotrack MK4093 and MK5093) or every one or four hours (Migrate Technology C65K). We retrieved loggers from 41 godwits from 2008– 2014 and from seven Red Knots in 2013–2014 for which we had corresponding departure information; in total there were 51 departures of godwits and seven of knots that we could match to actual departure times (this included multiple years for some godwits). Overall, 10-min wetness data were very accurate for both godwits and knots (median estimated departure times were 14 min and one min later than true departure, respectively), as were the 60-min and 240-min loggers on godwits if corrected by the wet counts that are recorded within measurement intervals (medians of 16 min earlier and 8 min earlier, respectively). These longer-interval loggers were still reasonably accurate without this adjustment (medians of 37 min and 74 min later, respectively). There was substantial variation between individuals and logger types, with 10-min loggers going dry up to 148 min (godwit) or 55 min (knot) earlier than true departure, while the 60-min and 240-min loggers recorded wetness up to 142 min or 124 min later than true departure (or 195 min or 232 min later, if unadjusted). Some of this variation simply reflects the interval over which wetness is recorded, but bird behaviour and/or logger performance must play a role in some cases (e.g. the logger going dry before departure or remaining wet after departure). Given observed bird behaviour upon arrival after migration (feeding on wet tidal flats), the wetness recording of geolocators is likely to give an accurate estimate of migratory flight duration, at least for species that frequent wet, particularly marine, habitats

    Do body condition and plumage during fuelling predict northwards departure dates of Great Knots Calidris tenuirostris from north-west Australia?

    Get PDF
    It is often assumed that strong selection pressures give rise to trade-offs between body condition and time in long-distance migrating birds. Birds that are 'behind schedule' in fuel deposition or moult should delay departure, and this should result in a negative correlation between initial condition and departure date. We tested this hypothesis in the Great Knot Calidris tenuirostris migrating from north-west Australia to eastern Asia en route to Siberia. Great Knot gain mass and moult into breeding plumage before leaving northern Australia in late March and early April, and fly 5400-6000 km to eastern China and Korea. We radiotracked 27 individuals (17 males and ten females) to determine departure dates; 23 migrated and four remained in Australia. We characterized body condition at capture using body mass, predicted pectoral muscle mass (based on ultrasound estimates of the size of the pectoral muscles) and breeding plumage scores. Residual condition indices were uncorrelated, indicating that at the individual level, variation in one fuelling component was not strongly associated with variation in the other components. Birds that did not depart had lower residual body mass and breeding plumage indices than those that did migrate; these four birds may have been subadults. Neither sex, size nor the condition indices explained variation in departure date of migrants. Reasons for this are explored. Departure dates for northward migrating waders indicate that the migration window (span over which birds depart) decreases with proximity to the northern breeding grounds. We suggest that migration schedules become tighter as birds get nearer to the breeding grounds. Thus the lack of a relationship between condition and departure date in Great Knots may reflect the fact that the departure episode under study is the first one in sequence and is still 4-8 weeks before breeding

    How wry is a wrybill?

    Get PDF
    The laterally asymmetrical bill of New Zealand’s endemic Wrybill Anarhynchus frontalis is unique among birds and has inspired much debate regarding its evolution and functional significance. Despite this, only one previous study has attempted to quantify the range of individual variation in bill shape, but used a single metric of curvature (bill tip angle). Using standardized digital photographs of 40 live Wrybills, we explored a range of metrics of bill length and curvature to describe the variation in bill shape in greater detail. Like the previous study, we found no sexual dimorphism in bill shape, despite males being slightly longer-billed than females, and recorded similar variation in bill tip angle (16–23°). However, we found that this single metric under-represented overall variation in bill shape, due to significant differences in where curvature began and was most pronounced along the length of the bill. Principal component analysis indicated that at least three independent metrics were required to describe the shape variation among individuals. Subtle differences in bill shape could plausibly affect an individual’s relative success among the range of Wrybill foraging strategies observed in breeding and non-breeding habitats. Elucidating the potential behavioral and fitness consequences of this variation will require detailed foraging and demographic studies with individuals of known bill morphology

    Basal metabolic rate declines during long-distance migratory flight in great knots

    Get PDF
    Great Knots (Calidris tenuirostris) make one of the longest migratory flights in the avian world, flying almost 5500 km from Australia to China during northward migration. We measured basal metabolic rate (BMR) and body composition in birds before and after this flight and found that BMR decreased 42%. The mass-specific BMR based on lean mass decreased 33%. We also starved a group of pre-migratory Great Knots in captivity to determine whether they showed the same reduction in BMR without having undergone the hard work of flight. The captive birds showed a similar range and reduction of BMR values as the wild birds. Exponents of relationships between BMR and body mass in different comparisons were high, indicating large changes in BMR as a function of body mass. Analysis of the body composition of ten wild and three captive birds found that the flight muscle mass and intestine mass positively correlated with BMR

    No evidence for an association between <i>Clock</i> gene allelic variation and migration timing in a long-distance migratory shorebird (<i>Limosa lapponica baueri</i>)

    Get PDF
    The gene Clock is a key part of the Core Circadian Oscillator, and the length of the polyglutamine (poly-Q) repeat sequence in Clock (ClkpolyQcds) has been proposed to be associated with the timing of annual cycle events in birds. We tested whether variation in ClkpolyQcds corresponds to variation in migration timing in the bar-tailed godwit (Limosa lapponica baueri), a species in which individuals show strong annual consistency in their migration timing despite the New Zealand population migrating across a 5-week period. We describe allelic variation of the ClkpolyQcds in 135 godwits over-wintering in New Zealand (N.Z.) and investigate whether polymorphism in this region is associated with northward migration timing (chronophenotype) from N.Z. or (for 32 birds tracked by geolocator) after the primary stopover in Asia. Six Clock alleles were detected (Q(7)-Q(12)) and there was substantial variation between individuals (heterozygosity of 0.79). There was no association between ClkpolyQcds polymorphism and migration timing from N.Z. The length of the shorter Clock allele was related to migration timing from Asia, though this relationship arose largely from just a few northern-breeding birds with longer alleles. Other studies show no consistent associations between ClkpolyQcds and migration timing in birds, although Clock may be associated with breeding latitude in some species (as an adaptation to photoperiodic regime). Apparent relationships with migration timing could reflect latitude-related variation in migration timing, rather than Clock directly affecting migration timing. On current evidence, ClkpolyQcds is not a strong candidate for driving migration timing in migratory birds generally
    • …
    corecore