32 research outputs found

    Usage Frequency of Product Configuration Systems Relative to Integrations and Fields of Application

    Get PDF
    Product Configuration Systems (PCS) are automatic solutions that can support and facilitate the sales and engineering processes. PCSs have recently attracted increased attention both from the researchers and practitioners. There are a variety of challenges reported in the literature as consequences of using PCS, which reduces the usage frequency of the system. To address those challenges, IT integrations can be an effective solution to reduce the number of manual tasks and complexity inside PCSs and make PCSs more user-friendly. However, the influence of integrating PCS to different IT systems on usage frequency has not been addressed in the literature. This paper aims to study the relationship of PCS usage frequency in terms of (1) different application area of the PCSs, and (2) integrations to different IT systems. The research method adopted in the paper is survey-based conducted in one company where the unit of analysis is operating PCS

    Secure Multiplication for Bitslice Higher-Order Masking: Optimisation and Comparison

    Get PDF
    In this paper, we optimize the performances and compare several recent masking schemes in bitslice on 32-bit arm devices, with a focus on multiplication. Our main conclusion is that efficiency (or randomness) gains always come at a cost, either in terms of composability or in terms of resistance against horizontal attacks. Our evaluations should therefore allow a designer to select a masking scheme based on implementation constraints and security requirements. They also highlight the increasing feasibility of (very) high-order masking that are offered by increasingly powerful embedded devices, with new opportunities of high-security devices in various contexts

    Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Implementations

    Get PDF
    International audienceCryptographic implementations deployed in real world devices often aim at (provable) security against the powerful class of side-channel attacks while keeping reasonable performances. Last year at Asiacrypt, a new formal verification tool named tightPROVE was put forward to exactly determine whether a masked implementation is secure in the well-deployed probing security model for any given security order t. Also recently, a compiler named Usuba was proposed to automatically generate bitsliced implementations of cryptographic primitives.This paper goes one step further in the security and performances achievements with a new automatic tool named Tornado. In a nutshell, from the high-level description of a cryptographic primitive, Tornado produces a functionally equivalent bitsliced masked implementation at any desired order proven secure in the probing model, but additionally in the so-called register probing model which much better fits the reality of software implementations. This framework is obtained by the integration of Usuba with tightPROVE+, which extends tightPROVE with the ability to verify the security of implementations in the register probing model and to fix them with inserting refresh gadgets at carefully chosen locations accordingly.We demonstrate Tornado on the lightweight cryptographic primitives selected to the second round of the NIST competition and which somehow claimed to be masking friendly. It advantageously displays performances of the resulting masked implementations for several masking orders and prove their security in the register probing model

    Random Probing Security: Verification, Composition, Expansion and New Constructions

    Get PDF
    International audienceThe masking countermeasure is among the most powerful countermeasures to counteract side-channel attacks. Leakage models have been exhibited to theoretically reason on the security of such masked implementations. So far, the most widely used leakage model is the probing model defined by Ishai, Sahai, and Wagner at (CRYPTO 2003). While it is advantageously convenient for security proofs, it does not capture an adversary exploiting full leakage traces as, e.g., in horizontal attacks. Those attacks target the multiple manipulations of the same share to reduce noise and recover the corresponding value. To capture a wider class of attacks another model was introduced and is referred to as the random probing model. From a leakage parameter p, each wire of the circuit leaks its value with probability p. While this model much better reflects the physical reality of side channels, it requires more complex security proofs and does not yet come with practical constructions. In this paper, we define the first framework dedicated to the random probing model. We provide an automatic tool, called VRAPS, to quantify the random probing security of a circuit from its leakage probability. We also formalize a composition property for secure random probing gadgets and exhibit its relation to the strong non-interference (SNI) notion used in the context of probing security. We then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce a compiler that builds a random probing secure circuit from small base gadgets achieving a random probing expandability property. We instantiate this compiler with small gadgets for which we verify the expected properties directly from our automatic tool. Our construction can tolerate a leakage probability up to 2 −8 , against 2 −25 for the previous construction, with a better asymptotic complexity

    A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic?

    No full text
    This opinion article discusses the most interesting results obtained in preclinical and clinical studies using A1AR partial agonists and positive allosteric modulators

    Targeting A3 and A2A adenosine receptors in the fight against cancer

    No full text
    Introduction: There is a vicious cycle of tumor hypoxia, high adenosine levels, immune suppression and cancer growth that involves the use of adenosine receptor ligands in tumors. After several years of research, the candidates emerging as promising new anticancer drugs are A3 adenosine receptor agonists and A2A receptor antagonists. Areas covered: The authors give an updated overview of the field related to A3 receptor agonists and A2A receptor antagonists in cancer and propose their perspectives on the status of these compounds in oncology. The rationale for the modulation of adenosine receptors in cancer is addressed, starting from the first in vitro evidence of their efficacy up to the animal and clinical studies. Expert opinion: A3 and A2A receptors are attractive targets in oncologic therapy due to their involvement in cancer progression and immune-resistance. Of relevance, the A3 subtype is also a tumor marker to be used in a personalized drug treatment program while the A2A receptor, playing a non-redundant role in immunomodulation, may be blocked in combination with checkpoint inhibitors to improve their efficacy. The future will reveal how successful this approach is in the fight against cancer

    Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: The signaling pathway

    No full text
    Low-energy low-frequency pulsed electromagnetic fields (PEMFs) exert several protective effects, such as the regulation of kinases, transcription factors as well as cell viability in both central and peripheral biological systems. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. In this study, we have characterized in nerve growth factor-differentiated pheochromocytoma PC12 cells injured with hypoxia: (i) the effects of PEMF exposure on cell vitality; (ii) the protective pathways activated by PEMFs to relief neuronal cell death, including adenylyl cyclase, phospholipase C, protein kinase C epsilon and delta, p38, ERK1/2, JNK1/2 mitogen-activated protein kinases, Akt and caspase-3; (iii) the regulation by PEMFs of prosurvival heat-shock proteins of 70 (HSP70), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 family proteins. The results obtained in this study show a protective effect of PEMFs that are able to reduce neuronal cell death induced by hypoxia by modulating p38, HSP70, CREB, BDNF, and Bcl-2 family proteins. Specifically, we found a rapid activation (30 min) of p38 kinase cascade, which in turns enrolles HSP70 survival chaperone molecule, resulting in a significant CREB phosphorylation increase (24 hr). In this cascade, later (48 hr), BDNF and the antiapoptotic pathway regulated by the Bcl-2 family of proteins are recruited by PEMFs to enhance neuronal survival. This study paves the way to elucidate the mechanisms triggered by PEMFs to act as a new neuroprotective approach to treat cerebral ischemia by reducing neuronal cell death
    corecore