89 research outputs found

    A Novel Internet-Based Reaction Monitoring, Control and Autonomous Self-Optimization Platform for Chemical Synthesis

    Get PDF
    We have developed a modular software system that enables researchers to monitor and control chemical reactions via the internet, using any device from any location in the world. It facilitates the automation of synthetic procedures and is able to autonomously self-optimize reaction parameters to find the best conditions meeting customizable, multi-component optimization functions. In this report, we demonstrate its utility as applied to reaction automation to maximize the output from a fixed volume of catalyst. We also showcase its ability to optimize a three dimension heterogeneous catalytic reaction and a five dimension Appel reaction against various target functions.We are grateful to the Woolf Fisher Trust (D.E.F), Pfizer Worldwide Research and Development (C.B.) and EPSRC (S.V.L., grant codes EP/K009494/1, EP/M004120/1 and EP/K039520/1) for financial assistance.This is the final version of the article. It was first available from American Chemical Society via http://dx.doi.org/10.1021/acs.oprd.5b0031

    Direct Amidation of Esters via Ball Milling

    Get PDF
    The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent

    Safety Considerations and Proposed Workflow for Laboratory-Scale Chemical Synthesis by Ball Milling

    Get PDF
    Chemical reactions that take place in a ball mill and in the absence of a bulk reaction solvent present different safety profiles to stirred solution reactions. Herein, we present and describe steps that a researcher may take to better ensure that they have considered some of the hazards and measures that emerge and minimize the risk to themselves and their colleagues

    Flow synthesis and biological studies of an analgesic adamantane derivative that inhibits P2X7-evoked glutamate release

    Get PDF
    We report the biological evaluation of a class of adamantane derivatives, which were achieved via modified telescoped machine-assisted flow procedure. Among the series of compounds tested in this work, 5 demonstrated outstanding analgesic properties. This compound showed that its action was not mediated through direct interaction with opioid and/or cannabinoid receptors. Moreover, it did not display any significant anti-inflammatory properties. Experiments carried out on rat cerebrocortical purified synaptosomes indicated that 5 inhibits the P2X7-evoked glutamate release, which may contribute to its antinociceptive properties. Nevertheless, further experiments are ongoing to characterize the pharmacological properties and mechanism of action of this molecule

    Novel ester and acid derivatives of the 1,5-diarylpyrrole scaffold as anti-inflammatory and analgesic agents. Synthesis and in vitro and in vivo biological evaluation.

    Get PDF
    A new generation of selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) was developed to circumvent the major side effects of cyclooxygenase-1 (COX-1) and COX-2 inhibitors (stomach ulceration and nephrotoxicity). As a consequence, coxibs are extremely valuable in treating acute and chronic inflammatory conditions. However, the use of coxibs, such as rofecoxib (Vioxx), was discontinued because of the high risk of cardiovascular adverse events. More recent clinical findings highlighted how the cardiovascular toxicity of coxibs could be mitigated by an appropriate COX-1 versus COX-2 selectivity. We previously reported a set of substituted 1,5-diarylpyrrole derivatives, selective for COX-2. Here, we describe the synthesis of new1,5-diarylpyrroles along with their inhibitory effects in vitro, ex vivo, and in vivo toward COX isoenzymes and their analgesic activity. Isopropyl-2-methyl-5-[4- (methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole-3-acetate (10a), a representative member of the series, was selected for pharmacokinetic and metabolic studies

    A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity

    Get PDF
    We report the synthesis and bio-pharmacological evaluation of a class of pyrrole derivatives featuring a small appendage fragment (carbaldehyde, oxime, nitrile) on the central core. Compound 1c proved to be extremely effective in vivo, showing an interesting anti-nociceptic profile that is comparable to reference compounds already marketed, hence representing a great stimulus for a further improvement of this class of molecules

    Novel ester and acid derivatives of the 1,5-diarylpyrrole scaffold as anti-inflammatory and analgesic agents. Synthesis and in vitro and in vivo biological evaluation.

    Get PDF
    A new generation of selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) was developed to circumvent the major side effects of cyclooxygenase-1 (COX-1) and COX-2 inhibitors (stomach ulceration and nephrotoxicity). As a consequence, coxibs are extremely valuable in treating acute and chronic inflammatory conditions. However, the use of coxibs, such as rofecoxib (Vioxx), was discontinued because of the high risk of cardiovascular adverse events. More recent clinical findings highlighted how the cardiovascular toxicity of coxibs could be mitigated by an appropriate COX-1 versus COX-2 selectivity. We previously reported a set of substituted 1,5-diarylpyrrole derivatives, selective for COX-2. Here, we describe the synthesis of new 1,5-diarylpyrroles along with their inhibitory effects in vitro, ex vivo, and in vivo toward COX isoenzymes and their analgesic activity. Isopropyl-2-methyl-5-[4-(methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole-3-acetate (10a), a representative member of the series, was selected for pharmacokinetic and metabolic studies

    Continuous Preparation and Use of Dibromoformaldoxime as a Reactive Intermediate for the Synthesis of 3-Bromoisoxazolines

    Get PDF
    We report the multistep continuous process for the preparation of dibromoformaldoxime (DBFO) as a precursor to generate 3-bromoisoxazolines. We also report process improvements that afford a productivity of over 620 mmol h−1 of DBFO.We would like to thank Syngenta Crop Protection AG (CB) and the EPSRC (SVL, grant nos. EP/K009494/1, EP/ M004120/1, and EP/K039520/1) for financial support

    Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT2C Receptor Agonists.

    Get PDF
    A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization.We would like to thank the EPSRC (SVL, grant nÂș EP/K0099494/1 and nÂș EP/K039520/1) for financial support.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/ml500507v
    • 

    corecore