87 research outputs found

    Peste des Petits Ruminants infection among cattle and wildlife in Northern Tanzania

    Get PDF
    We investigated peste des petits ruminants (PPR) infection in cattle and wildlife in northern Tanzania. No wildlife from protected ecosystems were seropositive. However, cattle from villages where an outbreak had occurred among small ruminants showed high PPR seropositivity, indicating that spillover infection affects cattle. Thus, cattle could be of value for PPR serosurveillance

    Field-Reassortment of Bluetongue Virus Illustrates Plasticity of Virus Associated Phenotypic Traits in the Arthropod Vector and Mammalian Host In Vivo

    Full text link
    Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur

    Isolation and Phylogenetic Grouping of Equine Encephalosis Virus in Israel

    Get PDF
    During 2008–2009 in Israel, equine encephalosis virus (EEV) caused febrile outbreaks in horses. Phylogenetic analysis of segment 10 of the virus strains showed that they form a new cluster; analysis of segment 2 showed ≈92% sequence identity to EEV-3, the reference isolate. Thus, the source of this emerging EEV remains uncertain

    Diversity of transmission outcomes following co-infection of sheep with strains of bluetongue virus serotype 1 and 8

    Get PDF
    Bluetongue virus (BTV) causes an economically important disease, bluetongue (BT), in susceptible ruminants and is transmitted primarily by species of Culicoides biting midges (Diptera: Ceratopogonidae). Since 2006, northern Europe has experienced multiple incursions of BTV through a variety of routes of entry, including major outbreaks of strains of BTV serotype 8 (BTV-8) and BTV serotype 1 (BTV-1), which overlapped in distribution within southern Europe. In this paper, we examined the variation in response to coinfection with strains of BTV-1 and BTV-8 using an in vivo transmission model involving Culicoides sonorensis, low passage virus strains, and sheep sourced in the United Kingdom. In the study, four sheep were simultaneously infected using BTV-8 and BTV-1 intrathoracically inoculated C. sonorensis and co-infections of all sheep with both strains were established. However, there were significant variations in both the initiation and peak levels of virus RNA detected throughout the experiment, as well as in the infection rates in the C. sonorensis that were blood-fed on experimentally infected sheep at peak viremia. This is discussed in relation to the potential for reassortment between these strains in the field and the policy implications for detection of BTV strains

    Long-term trial of protection provided by adenovirus-vectored vaccine expressing the PPRV H protein

    Get PDF
    A recombinant, replication-defective, adenovirus-vectored vaccine expressing the H surface glycoprotein of peste des petits ruminants virus (PPRV) has previously been shown to protect goats from challenge with wild-type PPRV at up to 4 months post vaccination. Here, we present the results of a longer-term trial of the protection provided by such a vaccine, challenging animals at 6, 9, 12 and 15 months post vaccination. Vaccinated animals developed high levels of anti-PPRV H protein antibodies, which were virus-neutralising, and the level of these antibodies was maintained for the duration of the trial. The vaccinated animals were largely protected against overt clinical disease from the challenge virus. Although viral genome was intermittently detected in blood samples, nasal and/or ocular swabs of vaccinated goats post challenge, viral RNA levels were significantly lower compared to unvaccinated control animals and vaccinated goats did not appear to excrete live virus. This protection, like the antibody response, was maintained at the same level for at least 15 months after vaccination. In addition, we showed that animals that have been vaccinated with the adenovirus-based vaccine can be revaccinated with the same vaccine after 12 months and showed an increased anti-PPRV antibody response after this boost vaccination. Such vaccines, which provide a DIVA capability, would therefore be suitable for use when the current live attenuated PPRV vaccines are withdrawn at the end of the ongoing global PPR eradication campaign

    The effect of temperature on the stability of African swine fever virus BA71V isolate in environmental water samples

    Get PDF
    African swine fever virus (ASFV) is known to be very stable and can remain infectious over long periods of time especially at low temperatures and within different matrices, particularly those containing animal-derived organic material. However, there are some gaps in our knowledge pertaining to the survivability and infectivity of ASFV in groundwater. This study aims to determine the stability and infectivity of the cell culture-adapted ASFV strain BA71V by plaque assay after incubation of the virus within river water samples at three different environmentally relevant temperatures (4 °C, 15 °C, and 21 °C) over the course of 42 days. The results from this study indicate that ASFV can remain stable and infectious when maintained at 4 °C in river water for more than 42 days, but as incubation temperatures are increased, the stability is reduced, and the virus is no longer able to form plaques after 28 days and 14 days, respectively, when stored at 15 °C and 21 °C. Characterizing the survivability of ASFV in groundwater can allow us to develop more appropriate inactivation and disinfection methods to support disease control and mitigate ASFV outbreaks

    Epizootic Hemorrhagic Disease in Cattle, Western Turkey

    Get PDF
    In 2007, an outbreak of epizootic hemorrhagic disease (EHD) occurred in Turkey. On the basis of clinical investigation, 41 cattle were suspected to have EHD. Reverse transcription–PCR and sequence analyses indicated that the virus belonged to EHD virus serotype 6, thus confirming EHD virus infection of cattle in Turkey

    Full Genome Characterisation of Bluetongue Virus Serotype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

    Get PDF
    In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established
    corecore