3 research outputs found
Conservation Genetics of the North American Box Turtle
This poster was presented at the National Collegiate Honors Council Conference in Boston, Massachusetts.https://scholarworks.uttyler.edu/student_posters/1006/thumbnail.jp
Re-evaluation of IIH as the Ideal Terrestrial Analog for Sans: Is There a Better Model to Consider?
While astronauts are returning from long duration spaceflight with multiple ocular signs that mimic those seen in terrestrial patients with elevated intracranial pressure (ICP), evidence has yet to prove a clinically significant increase in ICP during space.1 Preliminary research evidence may even suggest that ICP decreases in microgravity. Idiopathic intracranial hypertension (IIH) has long been considered the ideal terrestrial analogue to Spaceflight Associated Neuro-ocular Syndrome (SANS).1 However, there are several critical features of SANS that do not complement any reported case of IIH on Earth. These findings mandate a closer look at the accuracy of IIH as a terrestrial SANS analog
Involvement of Nrf2 in Ocular Diseases
The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world