1,221 research outputs found

    Classical analogous of quantum cosmological perfect fluid models

    Get PDF
    Quantization in the mini-superspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ=ρQp_Q = \rho_Q is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.Comment: Latex file, 10 pages, 3 figure

    OFDM and SC-FDMA over Fiber Using Directly Modulated VCSELs

    Get PDF
    Radio-over-fiber technology, used in the transport of radio signals over optical fiber by means of an optical carrier between a remote site and a central node of a cellular network, is an attractive solution for backhauling of a large number of remote antennas, enabling the shifting of the hardware complexity from base stations to a central station

    Transformer-based language models for semantic search and mobile applications retrieval

    Get PDF
    Search engines are being extensively used by Mobile App Stores, where millions of users world-wide use them every day. However, some stores still resort to simple lexical-based search engines, despite the recent advances in Machine Learning, Information Retrieval, and Natural Language Processing, which allow for richer semantic strategies. This work proposes an approach for semantic search of mobile applications that relies on transformer-based language models, fine-tuned with the existing textual information about known mobile applications. Our approach relies solely on the application name and on the unstructured textual information contained in its description. A dataset of about 500 thousand mobile apps was extended in the scope of this work with a test set, and all the available textual data was used to fine-tune our neural language models. We have evaluated our models using a public dataset that includes information about 43 thousand applications, and 56 manually annotated non- exact queries. The results show that our model surpasses the performance of all the other retrieval strategies reported in the literature. Tests with users have confirmed the performance of our semantic search approach, when compared with an existing deployed solution.info:eu-repo/semantics/acceptedVersio

    Troubles with quantum anistropic cosmological models: Loss of unitarity

    Full text link
    The anisotropic Bianchi I cosmological model coupled with perfect fluid is quantized in the minisuperspace. The perfect fluid is described by using the Schutz formalism which allows to attribute dynamical degrees of freedom to matter. A Schr\"odinger-type equation is obtained where the matter variables play the role of time. However, the signature of the kinetic term is hyperbolic. This Schr\"odinger-like equation is solved and a wave packet is constructed. The norm of the resulting wave function comes out to be time dependent, indicating the loss of unitarity in this model. The loss of unitarity is due to the fact that the effective Hamiltonian is hermitian but not self-adjoint. The expectation value and the bohmian trajectories are evaluated leading to different cosmological scenarios, what is a consequence of the absence of a unitary quantum structure. The consistency of this quantum model is discussed as well as the generality of the absence of unitarity in anisotropic quantum models.Comment: Latex file, 18 pages. To appear in General Relativity and Gravitatio

    On the consistency of a repulsive gravity phase in the early Universe

    Get PDF
    We exploit the possibility of existence of a repulsive gravity phase in the evolution of the Universe. A toy model with a free scalar field minimally coupled to gravity, but with the "wrong sign" for the energy and negative curvature for the spatial section, is studied in detail. The background solutions display a bouncing, non-singular Universe. The model is well-behaved with respect to tensor perturbations. But, it exhibits growing models with respect to scalar perturbations whose maximum occurs in the bouncing. Hence, large inhomogeneties are produced. At least for this case, a repulsive phase may destroy homogeneity, and in this sense it may be unstable. A newtonian analogous model is worked out; it displays qualitatively the same behaviour. The generality of this result is discussed. In particular, it is shown that the addition of an attractive radiative fluid does not change essentially the results. We discuss also a quantum version of the classical repulsive phase, through the Wheeler-de Witt equation in mini-superspace, and we show that it displays essentially the same scenario as the corresponding attractive phase.Comment: Latex file, 15 pages, 7 figures. There is a new figure, a new section and some other minor correction
    • 

    corecore