121 research outputs found

    Advances of genomic science and systems biology in renal transplantation: a review

    Get PDF
    The diagnosis of rejection in kidney transplant patients is based on histologic classification of a graft biopsy. The current “gold standard” is the Banff 97 criteria; however, there are several limitations in classifying rejection based on biopsy samples. First, a biopsy involves an invasive procedure. Second, there is significant variance among blinded pathologists in the interpretation of a biopsy. And third, there is also variance between the histology and the molecular profiles of a biopsy. To increase the positive predictive value of classifiers of rejection, a Banff committee is developing criteria that integrate histologic and molecular data into a unified classifier that could diagnose and prognose rejection. To develop the most appropriate molecular criteria, there have been studies by multiple groups applying omics technologies in attempts to identify biomarkers of rejection. In this review, we discuss studies using genome-wide data sets of the transcriptome and proteome to investigate acute rejection, chronic allograft dysfunction, and tolerance. We also discuss studies which focus on genetic biomarkers in urine and peripheral blood, which will provide clinicians with minimally invasive methods for monitoring transplant patients. We also discuss emerging technologies, including whole-exome sequencing and RNA-Seq and new bioinformatic and systems biology approaches, which should increase the ability to develop both biomarkers and mechanistic understanding of the rejection process

    Garlic's ability to prevent in vitro Cu(2+)-induced lipoprotein oxidation in human serum is preserved in heated garlic: effect unrelated to Cu(2+)-chelation

    Get PDF
    BACKGROUND: It has been shown that several extracts and compounds derived from garlic are able to inhibit Cu(2+)-induced low density lipoprotein oxidation. In this work we explored if the ability of aqueous garlic extract to prevent in vitro Cu(2+)-induced lipoprotein oxidation in human serum is affected by heating (a) aqueous garlic extracts or (b) garlic cloves. In the first case, aqueous extract of raw garlic and garlic powder were studied. In the second case, aqueous extract of boiled garlic cloves, microwave-treated garlic cloves, and pickled garlic were studied. It was also studied if the above mentioned preparations were able to chelate Cu(2+). METHODS: Cu(2+)-induced lipoprotein oxidation in human serum was followed by the formation of conjugated dienes at 234 nm and 37°C by 240 min in a phosphate buffer 20 mM, pH 7.4. Blood serum and CuSO(4 )were added to a final concentration of 0.67% and 0.0125 mM, respectively. The lag time and the area under the curve from the oxidation curves were obtained. The Cu(2+)-chelating properties of garlic extracts were assessed using an approach based upon restoring the activity of xanthine oxidase inhibited in the presence of 0.050 mM Cu(2+). The activity of xanthine oxidase was assessed by monitoring the production of superoxide anion at 560 nm and the formation of uric acid at 295 nm. Data were compared by parametric or non-parametric analysis of variance followed by a post hoc test. RESULTS: Extracts from garlic powder and raw garlic inhibited in a dose-dependent way Cu(2+)-induced lipoprotein oxidation. The heating of garlic extracts or garlic cloves was unable to alter significantly the increase in lag time and the decrease in the area under the curve observed with the unheated garlic extracts or raw garlic. In addition, it was found that the garlic extracts were unable to chelate Cu(2+). CONCLUSIONS: (a) the heating of aqueous extracts of raw garlic or garlic powder or the heating of garlic cloves by boiling, microwave or pickling do not affect garlic's ability to inhibit Cu(2+)-induced lipoprotein oxidation in human serum, and (b) this ability is not secondary to Cu(2+)-chelation

    Extensively drug-resistant Acinetobacter baumannii in a Thai hospital: a molecular epidemiologic analysis and identification of bactericidal Polymyxin B-based combinations

    Get PDF
    BACKGROUND: Limited knowledge of the local molecular epidemiology and the paucity of new effective antibiotics has resulted in an immense challenge in the control and treatment of extensively drug-resistant (XDR) Acinetobacter baumannii infections in Thailand. Antimicrobial combination regimens may be the only feasible treatment option in such cases. We sought to characterize the local molecular epidemiology and assess the bactericidal activity of various antibiotics individually and in combination against XDR A. baumannii in a Thai hospital. METHODS: All XDR A. baumannii isolates from Thammasat University Hospital were collected between October 2010 and May 2011. Susceptibility testing was conducted according to reference broth dilution methods. Pulse-field gel electrophoresis was used to genotype the isolates. Carbapenemase genes were detected using polymerase chain reaction. In vitro testing of clinically-relevant concentrations of imipenem, meropenem, doripenem, rifampicin and tigecycline alone and in combination with polymyxin B was conducted using multiple combination bactericidal testing. RESULTS: Forty-nine polymyxin B-susceptible XDR A. baumannii isolates were identified. bla(OXA-23) and bla(OXA-51) genes were detected in all isolates. Eight clonally related clusters were identified, resulting in the initiation of several infection control measures. Imipenem, meropenem, doripenem, rifampicin, and tigecycline in combination with PB respectively, exhibited bactericidal killing in 100%, 100%, 98.0%, 100% and 87.8% isolates respectively at 24 hours. CONCLUSION: Molecular epidemiologic analysis can aid the early detection of infection outbreak within the institution, resulting in the rapid containment of the outbreak. Imipenem/meropenem/rifampicin in combination with polymyxin B demonstrated consistent bactericidal effect against 49 bla(OXA-23)-harbouring XDR A. baumannii clinical isolates, suggesting a role of combination therapy in the treatment of these infections

    Anticipating the Unpredictable: A Review of Antimicrobial Stewardship and Acinetobacter Infections

    Full text link

    Resveratrol: French paradox revisited

    Get PDF
    Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed
    corecore