399 research outputs found

    Evolution of ferroelastic domain walls during phase transitions in barium titanate nanoparticles

    Get PDF
    In this work, ferroelastic domain walls inside BaTiO3 (BTO) tetragonal nanocrystals are distinguished by Bragg peak position and studied with Bragg coherent x-ray diffraction imaging (BCDI). Convergence-related features of the BCDI method for strongly phased objects are reported. A ferroelastic domain wall inside a BTO crystal has been tracked and imaged across the tetragonal-cubic phase transition and proves to be reversible. The linear relationship of relative displacement between two twin domains with temperature is measured and shows a different slope for heating and cooling, while the tetragonality reproduces well over temperature changes in both directions. An edge dislocation is also observed and found to annihilate when heating the crystal close to the phase transition temperature

    Femtosecond multimodal imaging with a laser-driven X-ray source

    Get PDF
    Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot

    Human factors and missed solutions to Enigma design weaknesses

    Get PDF
    The German World War II Enigma suffered from design weaknesses that facilitated its large-scale decryption by the British throughout the war. The author shows that the main technical weaknesses (self-coding and reciprocal coding) could have been avoided using simple contemporary technology, and therefore the true cause of the weaknesses is not technological but must be sought elsewhere. Specifically, human factors issues resulted in the persistent failure to seek out more effective designs. Similar limitations seem to beset the literature on the period, which misunderstands the Enigma weaknesses and therefore inhibits broader thinking about design or realising the critical role of human factors engineering in cryptography

    The influence of student gender on the assessment of undergraduate student work

    Get PDF
    The aim of this study was to investigate the influence of perceived student gender on the feedback given to undergraduate student work. Participants (n = 12) were lecturers in higher education and were required to mark two\ud undergraduate student essays. The first student essay that all participants marked was the control essay. Participants were informed that the control essay was written by Samuel Jones (a male student). Participants then marked the target essay. Although participants marked the same essay, half of the participants (n = 6) were informed that the student essay was written by Natasha Brown (a female student), while the remaining participants were informed that it was written by James Smith (a male student). In-text and end-of-text feedback were qualitatively analysed on six dimensions: academic style of writing; criticality; structure, fluency and cohesion; sources used; understanding/knowledge of the subject; and other. Analysis of feedback for both the control and target essay revealed no discernible differences in the number of comments (strengths of the essay, areas for improvement) made and the content and presentation of these comments between the two groups. Pedagogical implications pertaining to the potential impact of anonymous marking on feedback processes are discussed

    Imaging Light-Induced Migration of Dislocations in Halide Perovskites with 3D Nanoscale Strain Mapping

    Full text link
    In recent years, halide perovskite materials have been used to make high performance solar cell and light-emitting devices. However, material defects still limit device performance and stability. Here, we use synchrotron-based Bragg Coherent Diffraction Imaging to visualise nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals. We find significant strain heterogeneity within MAPbBr3_{3} (MA = CH3_{3}NH3+_{3}^{+}) crystals in spite of their high optoelectronic quality, and identify both \langle100\rangle and \langle110\rangle edge dislocations through analysis of their local strain fields. By imaging these defects and strain fields in situ under continuous illumination, we uncover dramatic light-induced dislocation migration across hundreds of nanometres. Further, by selectively studying crystals that are damaged by the X-ray beam, we correlate large dislocation densities and increased nanoscale strains with material degradation and substantially altered optoelectronic properties assessed using photoluminescence microscopy measurements. Our results demonstrate the dynamic nature of extended defects and strain in halide perovskites and their direct impact on device performance and operational stability.Comment: Main text and Supplementary Information. Main text: 15 pages, 4 figures. Supplementary Information: 16 pages, 27 figures, 1 tabl
    corecore