21 research outputs found
Recommended from our members
Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics.
At around 150 000 neurons, the adult Drosophila melanogaster central nervous system is one of the largest species, for which a complete cellular catalogue is imminent. While numerically much simpler than mammalian brains, its complexity is still difficult to parse without grouping neurons into consistent types, which can number 1-1000 cells per hemisphere. We review how neuroanatomical and gene expression data are being used to discover neuronal types at scale. The correlation among multiple co-varying neuronal properties, including lineage, gene expression, morphology, connectivity, response properties and shared behavioral significance is essential to the definition of neuronal cell type. Initial studies comparing morphological and transcriptomic definitions of neuronal type suggest that these are highly consistent, but there is much to do to match these approaches brain-wide. Matched single-cell transcriptomic and morphological data provide an effective reference point to integrate other data types, including connectomics data. This will significantly enhance our ability to make functional predictions from brain wiring diagrams as well facilitating molecular genetic manipulation of neuronal types
Recommended from our members
The natverse, a versatile toolbox for combining and analysing neuroanatomical data.
To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community
Recommended from our members
The natverse, a versatile toolbox for combining and analysing neuroanatomical data.
To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community
Recommended from our members
Functional and anatomical specificity in a higher olfactory centre.
Most sensory systems are organized into parallel neuronal pathways that process distinct aspects of incoming stimuli. In the insect olfactory system, second order projection neurons target both the mushroom body, required for learning, and the lateral horn (LH), proposed to mediate innate olfactory behavior. Mushroom body neurons form a sparse olfactory population code, which is not stereotyped across animals. In contrast, odor coding in the LH remains poorly understood. We combine genetic driver lines, anatomical and functional criteria to show that the Drosophila LH has ~1400 neurons and >165 cell types. Genetically labeled LHNs have stereotyped odor responses across animals and on average respond to three times more odors than single projection neurons. LHNs are better odor categorizers than projection neurons, likely due to stereotyped pooling of related inputs. Our results reveal some of the principles by which a higher processing area can extract innate behavioral significance from sensory stimuli
Analysis and optimization of equitable US cancer clinical trial center access by travel time
Importance: Racially minoritized and socioeconomically disadvantaged populations are currently underrepresented in clinical trials. Data-driven, quantitative analyses and strategies are required to help address this inequity.
Objective: To systematically analyze the geographical distribution of self-identified racial and socioeconomic demographics within commuting distance to cancer clinical trial centers and other hospitals in the US.
Design, Setting, and Participants: This longitudinal quantitative study used data from the US Census 2020 Decennial and American community survey (which collects data from all US residents), OpenStreetMap, National Cancer Institute–designated Cancer Centers list, Nature Index of Cancer Research Health Institutions, National Trial registry, and National Homeland Infrastructure Foundation-Level Data. Statistical analyses were performed on data collected between 2006 and 2020.
Main Outcomes and Measures: Population distributions of socioeconomic deprivation indices and self-identified race within 30-, 60-, and 120-minute 1-way driving commute times from US cancer trial sites. Map overlay of high deprivation index and high diversity areas with existing hospitals, existing major cancer trial centers, and commuting distance to the closest cancer trial center.
Results: The 78 major US cancer trial centers that are involved in 94% of all US cancer trials and included in this study were found to be located in areas with socioeconomically more affluent populations with higher proportions of self-identified White individuals (+10.1% unpaired mean difference; 95% CI, +6.8% to +13.7%) compared with the national average. The top 10th percentile of all US hospitals has catchment populations with a range of absolute sum difference from 2.4% to 35% from one-third each of Asian/multiracial/other (Asian alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, some other race alone, population of 2 or more races), Black or African American, and White populations. Currently available data are sufficient to identify diverse census tracks within preset commuting times (30, 60, or 120 minutes) from all hospitals in the US (N = 7623). Maps are presented for each US city above 500 000 inhabitants, which display all prospective hospitals and major cancer trial sites within commutable distance to racially diverse and socioeconomically disadvantaged populations.
Conclusion and Relevance: This study identified biases in the sociodemographics of populations living within commuting distance to US-based cancer trial sites and enables the determination of more equitably commutable prospective satellite hospital sites that could be mobilized for enhanced racial and socioeconomic representation in clinical trials. The maps generated in this work may inform the design of future clinical trials or investigations in enrollment and retention strategies for clinical trials; however, other recruitment barriers still need to be addressed to ensure racial and socioeconomic demographics within the geographical vicinity of a clinical site can translate to equitable trial participant representation
Network statistics of the whole-brain connectome of Drosophila
Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections1–3, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations4, 5, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (https://codex.flywire.ai) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure
A Drosophila computational brain model reveals sensorimotor processing
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1, 2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5—a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6–10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations
Neuronal wiring diagram of an adult brain
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1–6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8, 9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10–12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome—a map of projections between regions—from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species
Recommended from our members
Communication from Learned to Innate Olfactory Processing Centers Is Required for Memory Retrieval in Drosophila.
The behavioral response to a sensory stimulus may depend on both learned and innate neuronal representations. How these circuits interact to produce appropriate behavior is unknown. In Drosophila, the lateral horn (LH) and mushroom body (MB) are thought to mediate innate and learned olfactory behavior, respectively, although LH function has not been tested directly. Here we identify two LH cell types (PD2a1 and PD2b1) that receive input from an MB output neuron required for recall of aversive olfactory memories. These neurons are required for aversive memory retrieval and modulated by training. Connectomics data demonstrate that PD2a1 and PD2b1 neurons also receive direct input from food odor-encoding neurons. Consistent with this, PD2a1 and PD2b1 are also necessary for unlearned attraction to some odors, indicating that these neurons have a dual behavioral role. This provides a circuit mechanism by which learned and innate olfactory information can interact in identified neurons to produce appropriate behavior. VIDEO ABSTRACT.This work was supported by MRC LMB graduate studentships and Boehringer Ingelheim Fonds PhD fellowships (to M.-J.D. and A.S.B.) and a Janelia graduate research fellowship (to M.-J.D.), ERC starting (211089) and consolidator (649111) grants and core support from the MRC (MC-U105188491) (to G.S.X.E.J.), Agence Nationale de la Recherche funding of the MemoNetworks and MemoMap projects (to P.-Y.P. and T.P.) and the Labex Memolife PhD fellowship (to G.B.-G.), the Howard Hughes Medical Institute (to A.W. and G.M.R.), a Wellcome Trust collaborative award (203261/Z/16/Z to G.S.X.E.J., D.B., and G.M.R.), and a Cambridge Neuroscience-PSL collaborative grant supported by the Embassy of France in London (to G.S.X.E.J.). This work was also supported by the HHMI Janelia Visiting Scientist Program
Information flow, cell types and stereotypy in a full olfactory connectome
Funder: Howard Hughes Medical Institute; FundRef: http://dx.doi.org/10.13039/100000011The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains