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Highlights 
 

● A neuronal type is a testable hypothesis: similarity indicates functional equivalency.  
● Image registration together with morphology algorithms define types across datasets. 
● Single-cell transcriptomics produce cell-atlases with consistent clusters. 
● Specific genetic lines bridge transcriptomic clusters to morphological types. 
● Genetic driver lines, connectomics and transcriptomics make a full Drosophila neuronal parts list 

imminent.  
 

Abstract  
 
At around 150,000 neurons, the adult Drosophila melanogaster central nervous system is one of 
the largest for which a complete cellular catalogue is imminent. While numerically much simpler 
than mammalian brains, its complexity is still difficult to parse without grouping neurons into 
consistent types, which can number 1-1000 cells per hemisphere. We review how 
neuroanatomical and gene expression data are being used to discover neuronal types at scale. 
The correlation between multiple co-varying neuronal properties, including lineage, gene 
expression, morphology, connectivity, response properties and shared behavioural significance 
is essential to the definition of neuronal cell type. Initial studies comparing morphological and 
transcriptomic definitions of neuronal type suggest that these are highly consistent, but there is 
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much to do to match these approaches brain-wide. Matched single-cell transcriptomic and 
morphological data provide an effective reference point to integrate other data types, including 
connectomics data. This will significantly enhance our ability to make functional predictions from 
brain wiring diagrams as well facilitating molecular genetic manipulation of neuronal types. 

Neuronal types as functional units in the brain  
 
Neuronal types are as much about neuroscientists as the nervous system. They help us 
compare and communicate observations across different experiments and laboratories. 
Although this point is rarely made explicitly, it is perhaps not particularly controversial. In 
contrast whether and how neuronal types can be rigorously defined and whether the associated 
effort is worthwhile are more polarising issues. We argue that formalised approaches to defining 
neuronal type are essential as we are faced with increasingly complete parts lists for nervous 
systems. Even at the scale of D. melanogaster, there may be ~135,000 neurons in the adult 
brain, around ~20,000 in the adult ventral nervous system (VNS) (personal communication, D. 
Dickmann and Y. Huan) and ~10-12,000 in the larval central nervous system [*1]. Any typing 
effort at this scale depends on the application of quantitative methodologies to single neuron 
data, which exists for D. melanogaster thanks to ~12,500 genetic lines [2–5], stochastic labelling 
[6,7], connectomics (e.g. [*8,**9]) and single-cell RNA sequencing (scRNA-seq) [**10,*11,*12] 
(Figure 1). Currently, computational neuroanatomy based on 3D image data and single-cell 
transcriptomics are the principal approaches for discovering neuronal types at scale; we will 
review the key principles and technologies behind both approaches. While it is still rare to have 
both transcriptomic and morphological information at single neuron resolution, we will then 
cover strategies that allow these data types to be integrated and the benefits that this will bring. 

But first, why is type designation useful? In a comparable field (see [13]) that also suffers from 
intuitive but hard to define types, species taxonomy, central principles for classification include 
reproductive isolation, phylogeny and phenotypic similarity. As with species, neuronal types are 
ultimately the reproducible product of definable genomic regulatory programs active during 
development. We could approximate this developmental ‘aim’ as the average of the cell 
phenotypes that it produces – to borrow a philosophical idea, its ‘Platonic form’. Each real 
neuron would be generated from this ideal form by a somewhat noisy but statistically 
characterisable process. Analogously, the valleys in Waddington's epigenetic landscape, 
representing stable cell states, have a certain width that represents the allowed variance of a 
cell state while retaining its unique identity. Neurons of a different type may vary significantly in 
some features, but still be related by others. It is very helpful to capture this in a hierarchical 
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scheme that posits relationships between types. These ideas might drive us to consider classes 
of generative models that would capture the statistical regularities of neuronal types.  

Although in phylogeny, reproductive isolation is a hypothesis that can sometimes be tested, it is 
generally a thought experiment that calibrates definitions based on other measures e.g. 
genomic sequence similarity. A similar hypothesis for neuroscience might be that: 

Neurons of a type can be consistently identified across individuals but not consistently subdivided 

within individuals. 

This does not specify what neuronal features should be used for subdivision, but these could 
include variations in key functional properties including connectivity, morphology, gene 
expression and response properties. The degree of ‘difference’ across multiple features 
between two animals determines whether they can produce fertile offspring. Similarly, an 
assessment of ‘functional equivalency’ between neurons may provide an understanding of the 
level of feature covariance that is required to define a type. This presently requires expert input 
and calibration [*14], but could become increasingly automated [**15,16]. Although challenging, 
cell typing has the benefit of reducing dimensionality, by mapping many neurons onto a smaller 
number to units that are developmentally specified or functionally meaningful. This simplifies 
reasoning about brain architecture and development and facilitates scientific communication. 

Neuronal typing could also use the evolutionary and developmental origin of neurons as a 
grouping mechanism [13,17]. Combining single-cell lineage tracing and transcriptomics [18,19], 
could eventually provide a completely independent cell type reference tree. Different scientists 
might prefer a more developmental or functional approach to cell typing based on their area of 
research. In the fly morphological cell types currently represent the most extensive set of 
annotated cell types, and also provide a convenient bridge between transcriptome and 
connectome. However the goal must be to integrate across these layers rather than choose a 
single approach to defining neuronal types: this will ultimately provide us with the genetic 
regulatory programmes that define morphotypes, solidify type definitions, make cross-species 
links, produce actionable resources and further suggest functionality. 

Shared Morphology  

Electron microscopy (EM) methods will soon generate a synaptic-resolution ‘parts lists’ for a 
small business of flies (perhaps 1-2 larval, 2-3 adult brains and 2 VNS in < 5 years), which can 
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be compared to extant, annotated light-level morphologies [20] and leveraged to improve our 
understanding of circuit computations (e.g. [21]). EM morphologies can also be matched to 
those revealed by genetic labelling [22,23]. Genetic driver lines, especially the intersectional 
split-GAL4 system, give stable genetic access to small constellations of neuronal types, each of 
a shared morphology [24–26]. In the best cases they can selectively label just one 
morphological neuronal type. We therefore expect strong similarities between subdividing 
neurons by morphology and by gene expression. 

Neuronal morphologies are most often extracted from confocal microscopy stacks or EM data 
as ‘skeletons’, i.e. points in 3D space connected by 1D line segments. This is typically easier 
than acquiring accurate volumetric reconstructions. Insect neurons typically have highly 
reproducible spatial locations (e.g.[27]). For co-visualisation and quantitative comparison, 
skeletons from different brains can be ‘registered’ into a common template space (Figure 1a). 
Most confocal imaging pipelines image the whole fly brain or VNS with a neuropil counterstain, 
allowing high accuracy registration; several algorithms can then be used to assess neuronal 
similarity in this space. NBLAST [**15] is a fast and sensitive comparison tool that has been 
validated for expert-annotated neuronal types across datasets. It segments skeletons/image 
data into vectors and calculates neuron-neuron similarity scores between these vector clouds. 
Bridging registrations between templates mean that differently registered datasets can be 
compared, including between sexes and species [28]. The appropriate template might be the 
whole-brain or a repeated neural structure; there are ~750 visual cartridges and columns that 
subserve each of the fly’s ommatidia, and repeated circuits within 26 VNS hemi-neuromeres. 
Indeed, more success has been had in classifying optic column neurons [21] registered into a 
standard column space [29], than not [30]. However, when working with incomplete dye-fills and 
registration-incurred spatial-offsets, some manual intervention is needed to best classify types 
after an unsupervised clustering [*14]. 

Shared morphology alone is highly indicative of shared ontogeny, connectivity, response 
properties and physiologically-relevant gene expression. D. melanogaster’s ~200 central brain 
[31], ~1000 optic lobe [32], ~800 VNS neuromere [33] neuroblasts consistently create the same 
neuronal structures and the same, diverse types [34], with some lineages identifiable across 
taxa (e.g.[35]). Each neuron is unipolar, its single cell body fiber is sent into the neuropil, 
fasciculating with other neurons of similar developmental origin before bifurcation, in a 
stereotyped manner [36]. It has been suggested that cell body fascicles form a natural grouping 
system amenable to exhaustive identification by quantitative methods [36], not least because as 
a lineage-proxy they may indicate common gene expression [37]. For the same reasons, 
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internal tracts have been extremely helpful in delineating olfactory projection neuron types 
across insects [38]. 

Neurite apposition is suggestive of synaptic connectivity [39], which in turn is indicative of circuit 
role. Therefore, the overlap of both axon and dendrite in 3D space is often used for cell typing 
(e.g. [14,40,41,**42]), i.e. a high NBLAST score, as arbors are typically stereotyped within 2-3 
µm (adult brain ~4x106 µm3) [20]. With EM reconstructions from the same single brain, 
investigators have found mid-to-high axon-dendrite overlap highly predictive of connectivity 
[43,44], even if they do not always correlate [45,46] (different rules may apply for 
dendro-dendritic and axo-axonic connections). Clustering neurons by connectivity and NBLAST 
can produce similar results [**15], but morphology may be a more consistent indicator of 
neuronal type. Weak connections can account for a large fraction of a connectome [21,47] and 
can be manifold and variable between identified neurons across hemispheres [*8], repeated 
structures [45] or animals [46], perhaps as a product of small-scale activity-dependent structural 
changes or intrinsic developmental variability.  

In terms of response properties, it might be unsurprising that isomorphic neurons close to the 
sensory periphery respond similarly to stimuli, especially when their dendrites are clearly 
compartmentalised, for example into glomeruli (e.g. [48]). But crucially, it seems that even in 
integrative neuropils, neurons of high morphological similarity have stereotyped responses to 
stimuli and consistent basic electrical properties [*14].  

 

Shared transcriptome  

 
Neuronal types are defined by specific genetic programs active in particular developmental 
settings, which generate unique sets of mRNAs. These can be determined by whole 
transcriptome profiling. Un-targeted bulk microarray and RNA-seq methods average gene 
expression over diverse neurons, and have contributed relatively little to the identification of 
neuronal types in insects [49]. Rather, using expression data to type neurons relies on having a 
large amounts of single neuronal type, or single-cell expression data (Figure 1b).  

Drosophilid neurons have a small volume (~5-500 femtolitre somata), but lack of myelination 
means insect brain neurons can typically be dissociated without drastic cellular damage. 
Methods based on droplet microfluidics parallelise scRNA-seq for thousands of cells [50,51] 
(Figure 1b). These pipelines isolate a cell with a barcoded bead in a droplet, lyse it within the 
droplet, and then capture mRNA content via polyT-oligos on the bead’s surface. This has 
enabled three cell-atlases, built from dissociating hundreds of mixed-sex D. melanogaster 
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central brains [*12], optic lobes [*11], or whole brains [**10] (http://scope.aertslab.org) to 
achieve tens of thousands of high-quality single-cell transcriptomes. 

These single-cell profiles cluster into coherent groups, many of which can be linked to known 
morphological classes by marker gene expression [**10,*11,*12] (Figure 1b). Across the 
cell-atlases, annotated types seemed robust to variations in cell state, though differences in 
metabolic and activity-regulated expression between neuronal types can be seen [**10,*12]. 
Some similar neuronal types seem to converge in their expression profiles after circuit assembly 
[**52], however a majority of neuronal clusters retain their transcriptomic identity through adult 
life [**10]. 

Neuronal type specificity in GAL4 lines is generated by DNA elements that control GAL4 
expression, therefore epigenomics could reveal regulatory programs that define type. ChIP-seq 
has been performed for specific histone modifications on immuno-purified nuclei from 
octopaminergic and Kenyon cells [53], more recently TaDa on neural stem cells [54]. Chromatin 
accessibility profiling at single-cell level [55] has been applied to the D. melanogaster embryo, in 
which developing cell types were revealed based on unsupervised clustering of single-cell 
chromatin accessibility profiles [56].  

Neurons from the cell-atlases can already be grouped by proxies for neurotransmitter 
expression. It might be possible that some types express multiple fast-acting transmitters, and it 
seems that some neuropeptidergic or aminergic expression correlates/anti-correlates with 
certain fast-transmitters [*12]. In depth analysis of receptor expression may reveal the sign of 
neuronal connections, while expression of e.g. voltage-gated ion channels may reveal aspects 
of their electrical properties. This provides powerful information about circuit function when 
linked to morphologies (e.g. [57]), and especially, to connectomes [23]. 

Bridging morphology and transcriptome 
 
A recent attempt at cell body counting indicates that there are ~135,000 cells in the adult D. 

melanogaster brain, of which ~5,000 are glia (personal communication, Dion Dickmann and Yifu 
Huan). Independent estimates have suggested ~36-45,000 neurons in the adult's central brain 
[*12,31], ~120,000 in the optic lobes [2] and ~80,000 in the VNS. EM indicates the first instar 
larva has ~10-12,000 neurons [1]. Currently, Virtual Fly Brain (http://virtualflybrain.org) records 
837 adult and 398 larval neuronal types from the literature (additionally, 158 adult and 443 larval 
peripheral nervous system types). Golgi staining yielded good type estimates for the repeated 
cartridges of the adult lamina (~12) and columns of the medulla (~59) [58], repeated ~750-fold. 
Using ~20,000 skeletons with neurites in the central brain from the FlyCircuit dataset 
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(http://flycircuit.tw) and NBLAST, followed by affinity propagation [**15], we estimate the number 
of cell body fascicles that supply neurons to the adult D. melanogaster central brain at ~340 and 
neuronal types at ~3,800 (Figure 2a), an underestimation as FlyCircuit is not exhaustive. A 
central brain type on average may constitute only ~5 neurons per hemisphere, with many types 
constituting single cells and a few, like Kenyon cells, hundreds. 

To understand brain circuits, molecular detail must be overlaid onto these neuronal types (e.g. 
[23,57]). The largest extant scRNA-seq dataset [**10] is estimated to represent ~1 x coverage of 
the central brain. Already at such shallow coverage more than one thousand putative 
transcriptomic neuronal cell clusters can be identified (Figure 2b). Given that most neuronal 
types contain only a few neurons we predict that at least 10-100 x cell coverage will be needed 
to identify all morphological types. The whole brain atlas estimates that 45% of brain neurons 
are cholinergic, 10% GABAergic, 15% glutamatergic [**10] in close agreement with recent 
whole brain immunostaining (personal communication, D. Dickmann and Y. Huan). It will be 
hugely beneficial to neural circuits work to identify fast and modulatory neurotransmitters 
expressed by different neuronal types defined through connectomic work. 

In the future, we may be able to directly link morphology and transcriptome by determining 
transcriptomes in tissue. For example, recent techniques allow capturing mRNA in sectioned 
tissue and identifying it with gene-specific probes using an imaging-based approach [59] or 
through sequencing [60]. Currently, more common ways combine bulk or single-cell RNA-seq 
with the GAL4 system driving expression of a fluorescent label. One can select targeted 
neurons by manual picking [e.g. 61], bead purification [23,53,57,62], fluorescence activated cell 
(FAC) sorting [63], which can be followed by plate-based techniques that isolate single neurons 
[**52], or ribosome-pulldown (with tagged ribosomes used to isolate actively transcribed mRNA 
[64]). This has shown that many neuronal classes with different morphologies indeed exhibit 
distinct transcriptomes, revealing marker genes that can identify them across datasets. For 
example, different mushroom body output neurons (admittedly from different lineages), picked 
from sparse driver lines and profiled at near single-cell resolution (~4-14 neurons were pooled) 
can be differentiated by their expression profiles [61]. Interestingly, cell surface signalling genes 
were sufficient to separate these types; certain gene classes may be preferred for defining type. 
Split-GAL4 lines can target just a subset of a putative neuronal type as well as off-target 
neurons; transcriptomic and anatomical work may therefore need to test multiple lines per type 
as is commonly done in behavioural studies. 

More impressively, a scRNA-seq study [**52] retrieved ~1,000 pupal olfactory projection 
neurons from a driver line labelling ~40 types from just three lineages, and resolved 30 clusters. 
Interestingly, these clusters were recapitulated by full brain droplet-based scRNA-seq (Figure 
1b). It is not clear whether the discrepancy between 30 transcriptomic clusters versus 40 
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morphological clusters is a product of sampling bias, if the scRNA-seq lacked sufficient 
sensitivity or whether these clusters actually do map almost exactly onto types defined 
morphologically. Using sparser drivers and lineage mapping to target specific types, the 
investigators verified that four glomerulus’ projection neurons map one-to-one with a cluster. 
Two mapped one-to-two, likely because the constituent neurons of both types are produced in 
two separate waves of neurogenesis [**52]. It remains to be seen whether this expression 
difference is functionally meaningful.  

The second main bridge to morphology is using reported expression profiles and marker genes 
to identify neurons from large-scale datasets without using transgenic labelling of neuronal 
populations. The authors of [**10,*11,*12] identified many of the best studied neuronal types in 
their atlases. For example, Kenyon cells can be easily separated into three classes (γ, α′/β′ and 
α/β lobes) [**10,*12], but not the finer resolution of seven types (γd, γm, α′/β′ap, α′/β′m, α/βp, 
α/βs and α/βc) described by neuroanatomists [42]. However, these seven types likely have 
slightly different transcriptomes, as suggested recently by RNA-seq on sorted nuclei [62]. Higher 
coverage scRNA-seq (e.g. with plate-based techniques) or larger cell numbers, may indeed 
reveal seven clusters.  

These approaches are delivering the first examples of transcriptome-morphology bridges. To 
achieve higher resolution, statistical and machine-learning approaches like the ones used in the 
Drosophila embryo, may help to extrapolate spatial transcriptome mapping to the entire brain, 
although it is currently not clear how effective these techniques will be in the brain [65,66]. 
Another type of additional information to resolve the neuronal type tree relates to cell lineage 
information. Recent work in C. elegans and D. rerio has shown that ‘genome scarring’ using 
CRISPR-Cas9 during cell divisions can reveal single-cell lineage information, in conjunction with 
single-cell transcriptomes [18,19,67]. This approach may enable single-cell transcriptomes to be 
linked to their developmental origin, while also predicting coarse morphological features. 

Transcriptomic cell-atlases contain very large clusters of neurons that do not form tight clusters. 
For example, in [**10] the six largest clusters contain 50% of all cells; these are of unknown cell 
classes although their transmitters differ. There are several possible explanations. First, these 
large clusters may contain types present in small copy numbers (minimally one cell per 
hemisphere). Increasing the number of cells would therefore reveal more clusters; indeed 
downsampling cells from the current atlases shows that the number of bona fide clusters 
decrease [**10]. Secondly, neurons of different developmental origins and with different circuit 
roles may converge onto equivalent adult transcriptomes if their mature function does not 
depend upon differential gene expression [**52].  
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Finally, rather than only bridging morphology back to the transcriptome, we anticipate 
bi-directionality in that it will be possible to use single-cell genomics to design genetic driver 
lines that target groups of neurons defined by cell-atlas clusters. We also envision that 
scRNA-seq will suggest differentially expressed factors whose ‘misexpression’ through 
experimentation might convert one neuronal type, or its key traits, to another’s (e.g. [68,69]), or 
encourage new branching patterns and circuit integration.  

Outlook 
 

D. melanogaster is post-genomic. In the next few years it will be post-connectomic and 
post-transcriptomic at cellular resolution. It is therefore one of very few systems in which 
comprehensive brain-wide single-cell transcriptomics and morphological analyses can meet. 
Minimally, we might expect all of its neuronal types to become as well defined as those of the 
mammalian retina (~100 types) [13] or C. intestinalis (52) [70], and eventually C. elegans (118) 
[71]. For these species, morphological classification [70,72,73] matches gene expression and/or 
physiology well [71,74,75]. Gene expression programs [17], and even certain morphologies can 
be recognised across related species [76,77]. 

Of course defining neuronal types is only the beginning: ultimately we hope to make functional 
predictions based on a synthesis of this information. We can imagine a number of benefits: 
transcriptomic information could identify factors that specify individual neuronal types, but also 
the logic by which similar neuronal types – including those originating from a common lineage – 
are diversified. Likewise candidate wiring specificity factors could be identified by linked 
expression and connectomics data through genetic driver lines / morphology. Molecular 
information could also yield circuit hypotheses based on the distribution of transmitter and 
receptor distributions within a circuit [23]. 

scRNA-seq has identified up to 200 transcriptomic types within mammalian cortex [13] (M. 

musculus, cortex ~170 mm3). Recent work examined two diverse cortical subvolumes, finding 
133 transcriptomic types, of which 79 were shared [78]. Perhaps most comparably to the cortex, 
the mushroom body lobes (volume 1.4x10-4 mm3) only contain 9 intrinsic and 42 extrinsic known 
types [**42,79], however, estimates for regions like the lateral horn (1x10-4 mm3) are already 
>200 [*14].  While it is early days for this field, these initial mammalian estimates suggest that 
the mean number of cells per type may be much higher than in fly. Of course it is possible – 
indeed quite likely – that larger studies will identify more cortical neuronal types and also that 
subcortical brain areas may have a significantly higher density of neuronal types. Smaller, 
arthropod brains may be unable to expend time and energy developing and maintaining large, 
highly-plastic neuronal ensembles outside memory systems. They may instead rely more 
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heavily on information accumulated on an evolutionary timescale and encoded in the genome to 
determine the wiring of a large number of pre-specified neuronal types even in highly integrative 
brain regions. Numerous studies have shown that manipulation of types present as single 
neurons per hemisphere, in larva and in adults, can produce strong behavioural phenotypes. 
Notably, this is true even of many types that represent neither first order sensory input nor 
muscle innervation, e.g. in phenotypes for learning and memory [80,81], courtship [82], 
locomotor control [*8,83], etc. Figuring out why there are so many types, and to what degree 
their roles are unique, necessary or redundant, remains an important future challenge. 

The deep conservation revealed by genome sequencing has both underscored and accelerated 
the impact of D. melanogaster work across species. We do not yet know the extent to which its 
neuronal types and their gene expression programs are conserved, but we are confident that 
linking molecular and circuit neuroscience approaches to neuronal types will underscore the 
utility of neuronal type as the organisational unit for neural circuits, as well as the power of fly 
neurobiology. 

Figure 1 - Anatomical and transcriptomic pipelines for neuronal 
typing  

Pipelines used to cell type Drosophilid neurons by (a) morphology and (b) transcriptomics to 
create and co-cluster different datasets. For morphology (a), synaptic-scale, nanometer 
resolution data can be acquired using large scale volume EM, with manual or increasingly 
semi-automated neuron reconstruction. The volume collected in [**9] is estimated to contain 100 
m of cable with estimates for total manual reconstruction reaching 500-2000 person-years [20]. 
Light-level data can be acquired by micrometer confocal images of genetic driver lines registered 
to a common template brain. For typing purposes, stochastic labelling of neurons from broad 
GAL4 lines can reveal individual neuron morphologies (e.g. [7]), but sparse lines, usually based 
on the split GAL4 technique are required for reproducible access [24]. Identifying two parental 
lines to intersect for the split GAL4 technique can be a significant bottleneck in obtaining selective 
genetic access. Neuronal morphologies from any image source can be represented as a digital 
‘skeleton’ for further analysis. Datasets registered to different templates, can be quantitatively 
compared and co-visualised, even between sexes and species, by bridging registrations [28]. 
NBLAST, or other algorithms, can be used to compare query neurons to annotated libraries to 
assign identities, or cluster neurons to discover groups and build annotations (see Fig.3). Here, 
we co-cluster olfactory projection neurons reconstructed from EM data [**9] with annotated 
light-level FlyCircuit neurons [**15] in order to assign the EM neurons a neuronal type identity, 
that comes with a wealth of associated information from the literature (a sub-set shown). Dashed 
lines represent the image registration process. Pink text names different template brains. In (b) 
two different methodologies are shown to generate transcriptomic data. The first technique is 
based on sorting out known cell populations from the fly brain through the use of a genetic 
marker, followed by either bulk RNA-seq or well-based single-cell RNA-seq, e.g. SMART-Seq2. 
This leads to the generation of transcriptomes of well defined populations and neuronal types. 
The second technique allows for large-scale unbiased single-cell RNA-seq through droplet 
microfluidics, e.g. Drop-seq, InDrop or 10x Chromium. Through droplet-based techniques 
atlasses of whole brains can be generated. Both techniques are complementary since 
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transcriptomes from sorted populations can be used to annotate atlasses acquired by large-scale 
single-cell RNA-seq [84]. Clusters of similar cells from the atlas can also be co-clustered with 
sorted populations, through specific algorithms [85], finding similar clusters in both data sets (data 
shown from [**52] and [**10] for olfactory projection neurons).  
 

Figure 2 - Defining neuronal types for entire brains 
 
We examine pan-brain datasets for D. melanogaster neuronal morphologies from FlyCircuit and 
gene expression and [**10]. (a) NBLAST clustering of 19941 registered neurons with arbor in the 
central brain, from FlyCircuit. We used affinity propagation on just the cell body fibers [**15], and 
hierarchically clustered (by Ward’s criterion) 1709 exemplar cell body fibers into 343 clusters 
(whole neurons and cell body fibers are shown for six clusters), cutting the dendrogram at h = 
2.23 to yield cell body fascicles matching those described for the lateral horn [*14]. Implementing 
our proposal to define neuronal types by clustering within-lineage, we give an example of a 
hierarchical clustering of all neurons of a single estimated cell body fascicle. We cut the 
dendrogram at h = 0.65, a cut height that best replicates neuronal types of the lateral horn that 
have previously been semi-manually annotated in the same dataset [*14]. Doing this with each 
estimated cell body fascicle, yields a neuronal type estimate of 3798 (clusters of >1 skeleton). In 
(b) the t-SNE with annotated clusters from [**10] is shown (i), as well as some newly annotated 
clusters (red dashed boxes) using data from [23]. (ii) Dendrogram showing the hierarchical 
clustering of mean cells from each cluster based on cosine distance. In total 104 clusters are 
shown, which can be sub-clustered to a total of 230-1190 clusters. (iii) The dopaminergic neuron 
cluster from [**10] could be further divided in multiple subclusters, of which some express Fer2, a 
known marker for PAM neurons. (iv) Main neurotransmitter expression of the three single-cell 
atlasses generated of the adult fly brain, visualised through SCope.  
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