512 research outputs found

    Analysis and optimization of an algorithm for discrete tomography

    Get PDF
    Binary tomography is concerned with recovering binary images from a finite number of discretely sampled projections. Hajdu and Tijdeman outlined an algorithm for this type of problem. In this paper we analyze the algorithm and present several ways of improving the time complexity. We also give the results of experiments with an optimized version which is much faster than the original implementation, up to a factor of 50 or more (depending on the problem instance)

    Reconstructing binary images from discrete X-rays

    Get PDF
    We present a new algorithm for reconstructing binary images from their projections along a small number of directions. Our algorithm performs a sequence of related reconstructions, each using only two projections. The algorithm makes extensive use of network flow algorithms for solving the two-projection subproblems. Our experimental results demonstrate that the algorithm can compute reconstructions which resemble the original images very closely from a small number of projections, even in the presence of noise. Although the effectiveness of the algorithm is based on certain smoothness assumptions about the image, even tiny, non-smooth details are reconstructed exactly. The class of images for which the algorithm is most effective includes images of convex objects, but images of objects that contain holes or consist of multiple components can also be reconstructed with great accurac

    Network Flow Algorithms for Discrete Tomography

    Get PDF
    Tomography is a powerful technique to obtain images of the interior of an object in a nondestructive way. First, a series of projection images (e.g., X-ray images) is acquired and subsequently a reconstruction of the interior is computed from the available project data. The algorithms that are used to compute such reconstructions are known as tomographic reconstruction algorithms. Discrete tomography is concerned with the tomographic reconstruction of images that are known to contain only a few different gray levels. By using this knowledge in the reconstruction algorithm it is often possible to reduce the number of projections required to compute an accurate reconstruction, compared to algorithms that do not use prior knowledge. This thesis deals with new reconstruction algorithms for discrete tomography. In particular, the first five chapters are about reconstruction algorithms based on network flow methods. These algorithms make use of an elegant correspondence between certain types of tomography problems and network flow problems from the field of Operations Research. Chapter 6 deals with a problem that occurs in the application of discrete tomography to the reconstruction of nanocrystals from projections obtained by electron microscopy.The research for this thesis has been financially supported by the Netherlands Organisation for Scientific Research (NWO), project 613.000.112.UBL - phd migration 201

    Automatic alignment for three-dimensional tomographic reconstruction

    Get PDF
    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset

    An Algebraic Framework for Discrete Tomography: Revealing the Structure of Dependencies

    Full text link
    Discrete tomography is concerned with the reconstruction of images that are defined on a discrete set of lattice points from their projections in several directions. The range of values that can be assigned to each lattice point is typically a small discrete set. In this paper we present a framework for studying these problems from an algebraic perspective, based on Ring Theory and Commutative Algebra. A principal advantage of this abstract setting is that a vast body of existing theory becomes accessible for solving Discrete Tomography problems. We provide proofs of several new results on the structure of dependencies between projections, including a discrete analogon of the well-known Helgason-Ludwig consistency conditions from continuous tomography.Comment: 20 pages, 1 figure, updated to reflect reader inpu

    Algebraic filter approach for fast approximation of nonlinear tomographic reconstruction methods

    Get PDF
    We present a computational approach for fast approximation of nonlinear tomographic reconstruction methods by filtered backprojection (FBP) methods. Algebraic reconstruction algorithms are the methods of choice in a wide range of tomographic applications, yet they require significant computation time, restricting their usefulness. We build upon recent work on the approximation of linear algebraic reconstruction methods and extend the approach to the approximation of nonlinear reconstruction methods which are common in practice. We demonstrate that if a blueprint image is available that is sufficiently similar to the scanned object, our approach can compute reconstructions that approximate iterative nonlinear methods, yet have the same speed as FBP

    Sparse Tomographic Reconstruction of Brain Tissue from Serial Section Electron Microscopy

    Get PDF

    Accurately approximating algebraic tomographic reconstruction by filtered backprojection

    Get PDF
    In computed tomography, algebraic reconstruction methods tend to produce reconstructions with higher quality than analytical methods when presented with limited and noisy projection data. The high computational requirements of algebraic methods, however, limit their usefulness in practice. In this paper, we propose a method to approximate the algebraic SIRT method by the computationally efficient filtered backprojection method. The method is based on an efficient way of computing a special angle-dependent convolution filter for filtered backprojection. Using this method, a reconstruction quality that is similar to SIRT can be achieved by existing efficient implementations of the filtered backprojection method. Results for a phantom image show that the method is indeed able to produce reconstructions with a quality similar to algebraic methods when presented with limited and noisy projection data
    • …
    corecore