3,901 research outputs found
Quantum Fluctuations of a Coulomb potential
Long-range properties of the two-point correlation function of the
electromagnetic field produced by an elementary particle are investigated.
Using the Schwinger-Keldysh formalism it is shown that this function is finite
in the coincidence limit outside the region of particle localization. In this
limit, the leading term in the long-range expansion of the correlation function
is calculated explicitly, and its gauge independence is proved. The leading
contribution turns out to be of zero order in the Planck constant, and the
relative value of the root mean square fluctuation of the Coulomb potential is
found to be 1/\sqrt{2}, confirming the result obtained previously within the
S-matrix approach. It is shown also that in the case of a macroscopic body, the
\hbar^0 part of the correlation function is suppressed by a factor 1/N, where N
is the number of particles in the body. Relation of the obtained results to the
problem of measurability of the electromagnetic field is mentioned.Comment: 15 pages, 2 figure
Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests
We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response
Analytical model for laser-assisted recombination of hydrogenic atoms
We introduce a new method that allows one to obtain an analytical cross
section for the laser-assisted electron-ion collision in a closed form. As an
example we perform a calculation for the hydrogen laser-assisted recombination.
The -matrix element for the process is constructed from an exact electron
Coulomb-Volkov wave function and an approximate laser modified hydrogen state.
An explicit expression for the field-enhancement coefficient of the process is
expressed in terms of the dimensionless parameter , where and are the electron charge
and momentum respectively, and and are the
amplitude and frequency of the laser field respectively. The simplified version
of the cross section of the process is derived and analyzed within a soft
photon approximation.Comment: 10 page
Propagation of a Solitary Fission Wave
Reaction-diffusion phenomena are encountered in an astonishing array of natural systems. Under the right conditions, self stabilizing reaction waves can arise that will propagate at constant velocity. Numerical studies have shown that fission waves of this type are also possible and that they exhibit soliton like properties. Here, we derive the conditions required for a solitary fission wave to propagate at constant velocity. The results place strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist, and this condition would apply to other reaction diffusion phenomena as well. Numerical simulations are used to confirm the results and show that solitary fission waves fall into a bistable class of reaction diffusion phenomena. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729927]United States Nuclear Regulatory Commission NRC-38-08-946Mechanical Engineerin
Glassy Mean-Field Dynamics of the Backgammon model
In this paper we present an exact study of the relaxation dynamics of the
backgammon model. This is a model of a gas of particles in a discrete space
which presents glassy phenomena as a result of {\it entropy barriers} in
configuration space. The model is simple enough to allow for a complete
analytical treatment of the dynamics in infinite dimensions. We first derive a
closed equation describing the evolution of the occupation number
probabilities, then we generalize the analysis to the study the autocorrelation
function. We also consider possible variants of the model which allow to study
the effect of energy barriers.Comment: 21 pages, revtex, 4 uuencoded figure
Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways
The kinetics of amyloid beta turnover within human brain is still poorly understood. We previously found a dramatic decline in the turnover of Aβ peptides in normal aging. It was not known if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) fluid exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques. Here, we describe a non-steady state physiological model developed to decouple CSF fluid transport from other processes. Kinetic parameters were estimated using: (1) MRI-derived brain volumes, (2) stable isotope labeling kinetics (SILK) of amyloid-β peptide (Aβ), and (3) lumbar CSF Aβ concentration during SILK. Here we show that changes in blood-brain barrier transport and/or proteolysis were largely responsible for the age-related decline in Aβ turnover rates. CSF-based clearance declined modestly in normal aging but became increasingly important due to the slowing of other processes. The magnitude of CSF-based clearance was also lower than that due to blood-brain barrier function plus proteolysis. These results suggest important roles for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer\u27s Disease in humans
Factors associated with whole carcass condemnation rates in provincially-inspected abattoirs in Ontario 2001-2007: implications for food animal syndromic surveillance
<p>Abstract</p> <p>Background</p> <p>Ontario provincial abattoirs have the potential to be important sources of syndromic surveillance data for emerging diseases of concern to animal health, public health and food safety. The objectives of this study were to: (1) describe provincially inspected abattoirs processing cattle in Ontario in terms of the number of abattoirs, the number of weeks abattoirs process cattle, geographical distribution, types of whole carcass condemnations reported, and the distance animals are shipped for slaughter; and (2) identify various seasonal, secular, disease and non-disease factors that might bias the results of quantitative methods, such as cluster detection methods, used for food animal syndromic surveillance.</p> <p>Results</p> <p>Data were collected from the Ontario Ministry of Agriculture, Food and Rural Affairs and the Ontario Cattlemen's Association regarding whole carcass condemnation rates for cattle animal classes, abattoir compliance ratings, and the monthly sales-yard price for various cattle classes from 2001-2007. To analyze the association between condemnation rates and potential explanatory variables including abattoir characteristics, season, year and commodity price, as well as animal class, negative binomial regression models were fit using generalized estimating equations (GEE) to account for autocorrelation among observations from the same abattoir. Results of the fitted model found animal class, year, season, price, and audit rating are associated with condemnation rates in Ontario abattoirs. In addition, a subset of data was used to estimate the average distance cattle are shipped to Ontario provincial abattoirs. The median distance from the farm to the abattoir was approximately 82 km, and 75% of cattle were shipped less than 100 km.</p> <p>Conclusions</p> <p>The results suggest that secular and seasonal trends, as well as some non-disease factors will need to be corrected for when applying quantitative methods for syndromic surveillance involving these data. This study also demonstrated that animals shipped to Ontario provincial abattoirs come from relatively local farms, which is important when considering the use of spatial surveillance methods for these data.</p
Environmental DNA metabarcoding of pan trap water to monitor arthropod-plant interactions
Globally, the diversity of arthropods and the plants upon which they rely are under increasing pressure due to a combination of biotic and abiotic anthropogenic stressors. Unfortunately, conventional survey methods used to monitor ecosystems are often challenging to conduct on large scales. Pan traps are a commonly used pollinator survey method and environmental DNA (eDNA) metabarcoding of pan trap water may offer a high-throughput alternative to aid in the detection of both arthropods and the plant resources they rely on. Here, we examined if eDNA metabarcoding can be used to identify arthropods and plant species from pan trap water, and investigated the effect of different DNA extraction methods. We then compared plant species identified by metabarcoding with observation-based floral surveys and also assessed the contribution of airborne plant DNA (plant DNA not carried by arthropods) using marble traps to reduce putative false positives in the pan trap dataset. Arthropod eDNA was only detected in 17% of pan trap samples and there was minimal overlap between the eDNA results and morphological identifications. In contrast, for plants, we detected 64 taxa, of which 53 were unique to the eDNA dataset, and no differences were identified between the two extraction kits. We were able to significantly reduce the contribution of airborne plant DNA to the final dataset using marble traps. This study demonstrates that eDNA metabarcoding of pan trap water can detect plant resources used by arthropods and highlights the potential for eDNA metabarcoding to be applied to investigations of arthropod-plant interactions
Nonrelativistic Chern-Simons Vortices on the Torus
A classification of all periodic self-dual static vortex solutions of the
Jackiw-Pi model is given. Physically acceptable solutions of the Liouville
equation are related to a class of functions which we term
Omega-quasi-elliptic. This class includes, in particular, the elliptic
functions and also contains a function previously investigated by Olesen. Some
examples of solutions are studied numerically and we point out a peculiar
phenomenon of lost vortex charge in the limit where the period lengths tend to
infinity, that is, in the planar limit.Comment: 25 pages, 2+3 figures; improved exposition, corrected typos, added
one referenc
Space-Time Evolution of the Oscillator, Rapidly moving in a random media
We study the quantum-mechanical evolution of the nonrelativistic oscillator,
rapidly moving in the media with the random vector fields. We calculate the
evolution of the level probability distribution as a function of time, and
obtain rapid level diffusion over the energy levels. Our results imply a new
mechanism of charmonium dissociation in QCD media.Comment: 32 pages, 13 figure
- …