7,068 research outputs found

    Virtual patient design : exploring what works and why : a grounded theory study

    Get PDF
    Objectives: Virtual patients (VPs) are online representations of clinical cases used in medical education. Widely adopted, they are well placed to teach clinical reasoning skills. International technology standards mean VPs can be created, shared and repurposed between institutions. A systematic review has highlighted the lack of evidence to support which of the numerous VP designs may be effective, and why. We set out to research the influence of VP design on medical undergraduates. Methods: This is a grounded theory study into the influence of VP design on undergraduate medical students. Following a review of the literature and publicly available VP cases, we identified important design properties. We integrated them into two substantial VPs produced for this research. Using purposeful iterative sampling, 46 medical undergraduates were recruited to participate in six focus groups. Participants completed both VPs, an evaluation and a 1-hour focus group discussion. These were digitally recorded, transcribed and analysed using grounded theory, supported by computer-assisted analysis. Following open, axial and selective coding, we produced a theoretical model describing how students learn from VPs. Results: We identified a central core phenomenon designated ‘learning from the VP’. This had four categories: VP Construction; External Preconditions; Student–VP Interaction, and Consequences. From these, we constructed a three-layer model describing the interactions of students with VPs. The inner layer consists of the student's cognitive and behavioural preconditions prior to sitting a case. The middle layer considers the VP as an ‘encoded object’, an e-learning artefact and as a ‘constructed activity’, with associated pedagogic and organisational elements. The outer layer describes cognitive and behavioural change. Conclusions: This is the first grounded theory study to explore VP design. This original research has produced a model which enhances understanding of how and why the delivery and design of VPs influence learning. The model may be of practical use to authors, institutions and researchers

    A Model for Classical Space-time Co-ordinates

    Get PDF
    Field equations with general covariance are interpreted as equations for a target space describing physical space time co-ordinates, in terms of an underlying base space with conformal invariance. These equations admit an infinite number of inequivalent Lagrangian descriptions. A model for reparametrisation invariant membranes is obtained by reversing the roles of base and target space variables in these considerations.Comment: 9 pages, Latex. This was the basis of a talk given at the Argonne National Laboratory 1996 Summer Institute : Topics on Non-Abelian Duality June 27-July 1

    Mass as a Relativistic Quantum Observable

    Full text link
    A field state containing photons propagating in different directions has a non vanishing mass which is a quantum observable. We interpret the shift of this mass under transformations to accelerated frames as defining space-time observables canonically conjugated to energy-momentum observables. Shifts of quantum observables differ from the predictions of classical relativity theory in the presence of a non vanishing spin. In particular, quantum redshift of energy-momentum is affected by spin. Shifts of position and energy-momentum observables however obey simple universal rules derived from invariance of canonical commutators.Comment: 5 pages, revised versio

    Helical, Angular and Radial Ordering in Narrow Capillaries

    Full text link
    To enlighten the nature of the order-disorder and order-order transitions in block copolymer melts confined in narrow capillaries we analyze peculiarities of the conventional Landau weak crystallization theory of systems confined to cylindrical geometry. This phenomenological approach provides a quantitative classification of the cylindrical ordered morphologies by expansion of the order parameter spatial distribution into the eigenfunctions of the Laplace operator. The symmetry of the resulting ordered morphologies is shown to strongly depend both on the boundary conditions (wall preference) and the ratio of the cylinder radius and the wave length of the critical order parameter fluctuations, which determine the bulk ordering of the system under consideration. In particular, occurrence of the helical morphologies is a rather general consequence of the imposed cylindrical symmetry for narrow enough capillaries. We discuss also the ODT and OOT involving some other simplest morphologies. The presented results are relevant also to other ordering systems as charge-density waves appearing under addition of an ionic solute to a solvent in its critical region, weakly charged polyelectrolyte solutions in poor solvent, microemulsions etc.Comment: 6 pages, 3 figure

    On O-X mode conversion in 2D inhomogeneous plasma with a sheared magnetic field

    Full text link
    The conversion of an ordinary wave to an extraordinary wave in a 2D inhomogeneous slab model of the plasma confined by a sheared magnetic field is studied analytically.Comment: sub. to PPC

    On the squeezed states for n observables

    Full text link
    Three basic properties (eigenstate, orbit and intelligence) of the canonical squeezed states (SS) are extended to the case of arbitrary n observables. The SS for n observables X_i can be constructed as eigenstates of their linear complex combinations or as states which minimize the Robertson uncertainty relation. When X_i close a Lie algebra L the generalized SS could also be introduced as orbit of Aut(L^C). It is shown that for the nilpotent algebra h_N the three generalizations are equivalent. For the simple su(1,1) the family of eigenstates of uK_- + vK_+ (K_\pm being lowering and raising operators) is a family of ideal K_1-K_2 SS, but it cannot be represented as an Aut(su^C(1,1)) orbit although the SU(1,1) group related coherent states (CS) with symmetry are contained in it. Eigenstates |z,u,v,w;k> of general combination uK_- + vK_+ + wK_3 of the three generators K_j of SU(1,1) in the representations with Bargman index k = 1/2,1, ..., and k = 1/4,3/4 are constructed and discussed in greater detail. These are ideal SS for K_{1,2,3}. In the case of the one mode realization of su(1,1) the nonclassical properties (sub-Poissonian statistics, quadrature squeezing) of the generalized even CS |z,u,v;+> are demonstrated. The states |z,u,v,w;k=1/4,3/4> can exhibit strong both linear and quadratic squeezing.Comment: 25 pages, LaTex, 4 .pic and .ps figures. Improvements in text, discussion on generation scheme added. To appear in Phys. Script

    Analytical solutions of the Schr\"{o}dinger equation with the Woods-Saxon potential for arbitrary ll state

    Full text link
    In this work, the analytical solution of the radial Schr\"{o}dinger equation for the Woods-Saxon potential is presented. In our calculations, we have applied the Nikiforov-Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary ll states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of nn and ll quantum numbers.Comment: 14 page

    Relativistic phase space: dimensional recurrences

    Get PDF
    We derive recurrence relations between phase space expressions in different dimensions by confining some of the coordinates to tori or spheres of radius RR and taking the limit as R→∞R \to \infty. These relations take the form of mass integrals, associated with extraneous momenta (relative to the lower dimension), and produce the result in the higher dimension.Comment: 13 pages, Latex, to appear in J Phys

    Scalable Spatial Super-Resolution using Entangled Photons

    Full text link
    N00N states -- maximally path-entangled states of N photons -- exhibit spatial interference patterns sharper than any classical interference pattern. This is known as super-resolution. However, even with perfectly efficient number-resolving detectors, the detection efficiency of all previously demonstrated methods to measure such interference decreases exponentially with the number of photons in the N00N state, often leading to the conclusion that N00N states are unsuitable for spatial measurements. Here, we create spatial super-resolution fringes with two-, three-, and four-photon N00N states, and demonstrate a scalable implementation of the so-called ``optical centroid measurement'' which provides an in-principle perfect detection efficiency. Moreover, we compare the N00N-state interference to the corresponding classical super-resolution interference. Although both provide the same increase in spatial frequency, the visibility of the classical fringes decreases exponentially with the number of detected photons, while the visibility of our experimentally measured N00N-state super-resolution fringes remains approximately constant with N. Our implementation of the optical centroid measurement is a scalable method to measure high photon-number quantum interference, an essential step forward for quantum-enhanced measurements, overcoming what was believed to be a fundamental challenge to quantum metrology

    Self-force of a point charge in the space-time of a symmetric wormhole

    Full text link
    We consider the self-energy and the self-force for an electrically charged particle at rest in the wormhole space-time. We develop general approach and apply it to two specific profiles of the wormhole throat with singular and with smooth curvature. The self-force for these two profiles is found in manifest form; it is an attractive force. We also find an expression for the self-force in the case of arbitrary symmetric throat profile. Far from the throat the self-force is always attractive.Comment: 18 pages, 3 figures Comments: corrected pdf, enlarged pape
    • 

    corecore