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A MODEL FOR CLASSICAL SPACE-TIME CO-ORDINATES
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Abstract : Field equations with general covariance are interpreted as equa-
tions for a target space describing physical space time co-ordinates, in terms
of an underlying base space with conformal invariance. These equations ad-
mit an infinite number of inequivalent Lagrangian descriptions. A model for
reparametrisation invariant membranes is obtained by reversing the roles of
base and target space variables in these considerations.
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1 Introduction.

A characteristic feature of the classical equations of General Relativity is the
property of General Covariance; i.e that the equations are covariant under
differentiable re-definitions of the space-time co-ordinates. In the first of a
series of papers investigating a class of covariant equations which Jan Gov-
aerts and the first author, which we called ‘Universal Field Equations’ [1]-[4]
we floated the idea that these equations could be employed as a model for
space time co-ordinates. It is one object of this paper to explore this idea
in somewhat greater depth. This is a purely classical discussion of a way
of describing a co-ordinate system which is sufficiently flexible to admit the
general class of functional redefinitions implied by covariance. It has nothing
to do with quantum effects like the concept of a minimum compactification
radius due to T duality which rules out the the notion of an infinitely precise
point in space time. Here the discussion will remain entirely classical and
will explore the idea that the space-time co-ordinates in D dimensions may
be represented by ‘flat’ co-ordinates in D + 1 dimensions, which transform
under the conformal group in D+1 dimensions. There are, however two ways
to implement general covariance; one by the use of covariant derivatives, and
the other by exploting properties of determinants. In a second application
the ‘Universal Field Equations’ may be regarded as describing membranes,
by reversing the roles of fields and base-co-ordinates. Then the covariance of
fields becomes the reparametrisation invariance of the new base space.

2 Multifield UFE

Suppose X(z;)*, a=1,...,D, i =1,...,D + 1 denotes a set of D fields,
in D + 1 dimensional space. They may be thought of as target space
co-ordinates which constitute a mapping from a D + 1 dimensional base
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In addition, let J, denote the Jacobian

where x}, is the independent variable which is omitted



in J,. Now suppose that the vector field X satisfies the equations of motion

S S X5 = 0. (2.1)
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This is a direct generalisation of the Bateman equation to D fields in D + 1
dimensions, [1], and may be written in terms of the determinant of a bordered
matrix where the diagonal blocks are of dimensions D x D and D+1x D +1
respectively as
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The coefficients of the arbitrary constant parameters \. set to zero reproduce
the D equations (2.1). The solutions of these equations can be verified to
possess the property that any functional redefinition of a specific solution is
also a solution; i.e. the property of general covariance. A remarkable feature
of (2.1) is that the equations admit infinitely many inequivalent Lagrangian
formulations. Suppose £ depends upon the fields X* and their first deriva-
tives X7 through the Jacobians subject only to the constraint that L£(X*, J;)
is a homogeneous function of the Jacobians, i.e.

D+1 a£
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Then the Euler variation of £ with respect to the field X* gives
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The usual convention of summing over repeated indices is adhered to here.
Now by the theorem of false cofactors
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Then, exploiting the homogeneity of £ as a function of .Ji, (2.3), the first two
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terms in the last line of (2.4) cancel, and the term ﬁWGJX}C’X& vanishes
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be simplified as follows. Differentiation of the homogeneity equation (2.3)
gives

by symmetry considerations. The remaining term may
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But since ), Jpy X7 = 0, Va, together with symmetry, this implies that the
linear equations (2.6) can be solved by

L > XHX? (2.7)
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for some functions d®. Inserting this representation into (2.4) and using a
similar result to (2.5);

DZH 0T b — —bap - (2.8)
= oxp

Then, assuming d*® is invertible, as is the generic case, the last term reduces
to >k JiJk X, which, set to zero is just the equation of motion (2.1)

2.1 TIteration

This procedure may be iterated; Given a transformation described by the
equation (2.1), from a base space of D + 2 dimensions with co-ordinates x;
to to a target space of D + 1 with co-ordinates ¥; which in turn are used as
a base space for a similar transformation to co-ordinates Xy, k= 1...D the
mapping from D + 1 dimensions to D is given in terms of the determinant
of a bordered matrix of similar form to (2.2), where the diagonal blocks are
of dimensions D x D and D + 2 x D + 2 respectively;
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5This calculation without the X dependence of the Lagrangian already can be found
in [1]; the new aspect here is the extension to include the fields themselves, following the
single field example of [6].



The equations which form an overdetermined set are obtained by requiring
that the determinant vanishes for all choices of A; Further iterations yield
the multifield UFE, discussed in [3], and the Lagrangian description is given
by a iterative procedure.

2.2 Solutions.

There are various ways to approach the question of solutions. Consider the
multifield UFE;
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where \q,...,\, are arbitrary constants, and the functions X', ..., X™ are

independent of ;. The equations which result from setting the coefficients
of the monomials of degree d — n in A; in the expansion of the determinant
to zero form an overdetermined set, but, as we shall show, this set possesses
many nontrivial solutions.

The equation (2.10) may be viewed as a special case of the Monge-Ampere
equation in d + n dimensions, namely

d+n
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Equation (2.10) results from the restriction of u to have the form
w(ye) = w(@r, ..., Ta, My, An) = 30N X, (2.12)
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where we have set
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Now the Monge-Ampere equation is equivalent to the statement that there
exists a functional dependence among the first derivatives u,, of u of the form

Fuy,, ..., uy,,,) =0, (2.14)

where F'is an arbitrary differentiable function. Methods for the solution of
this equation are known [7, 8]. Returning to the target space variables X7,
this relation becomes
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3 Exact Solutions of the UFE

3.1 Implicit Solutions

The general representation of a solution of this set of constraints which do
not depend upon the parameters A\’ evades us; however there are two cir-
cumstances in which a solution may be found. In the first case a class of
solutions in implicit form may be obtained by taking F' to be linear in the
first d arguments w;. Then

F:Zf,-(Xl,...,X”)wizo. (3.1)

It can be proved that this is the generic situation for the cases of two and
three fields. In general, provided there are terms linear in \; in F, as the X'
do not depend upon JA;, one expects that as a minimal requirement the terms
in F linear in )\; will vanish for a solution. Equating each coefficient of A’ in
(3.1) to zero we obtain the following system of partial differential equations

d
YoAXY L XMXI =0, j=1,...,n (3.2)
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The general solution of these equations may be represented in terms of n
arbitrary smooth functions R?, where

Rj(fdl'l — fl.Z'd, vy JdTd—1 — fd,1$d, Xl, e ,Xn) = 0. (33)



The solution of these equations for X* gives a wide class of solutions to the
UFE.

3.2 Explicit Solution.

There is a wide class of explicit solutions to the UFE. They are simply given

by choosing X7(zy,...,z4) to be a homogeneous function of z; of weight
zero, i.e.
¢ 9XI
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The proof of this result depends upon differentiation of (3.4) with respect to
the z;. A particularly illuminating example is the case of spherical polars; in
d=3, n=2 take

X! = ¢ = arctan (L> ; X% =0 = arctan (ﬁ> : (3.5)
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Then these co-ordinates satisfy (2.9).

4 Conclusions

A wide class of solutions to the set of UFE which are generally covariant
has been obtained. In order to adapt the theory to apply to possible in-
tegrable membranes, it is necessary to interchange the roles of dependent
and independent variables, so that general covariance becomes reparametri-
sation invariance of the base space [2]. In order to invert the dependent and
independent variables in this fashion, it is necessary first to augment the
dependent variables by some additional d —n fields Yy (z;), then consider the
x; as functions of X;, 7 =1...n Although in principle z; could also depend
upon the artificial variables Y, k =1...d —n, we make the restriction that
this does not occur. (See [2] for further details) In this case the variables z;
play the role of target space for an n-brane, dependent upon n co-ordinates
X7, Since it is fully reparametrisation invariant, it may play some part in
the further understanding of string theory, but this is by no means clear.
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