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Abstract : Field equations with general covariance are interpreted as equa-

tions for a target space describing physical space time co-ordinates, in terms

of an underlying base space with conformal invariance. These equations ad-

mit an in�nite number of inequivalent Lagrangian descriptions. A model for

reparametrisation invariant membranes is obtained by reversing the roles of

base and target space variables in these considerations.
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1 Introduction.

A characteristic feature of the classical equations of General Relativity is the

property of General Covariance; i.e that the equations are covariant under

di�erentiable re-de�nitions of the space-time co-ordinates. In the �rst of a

series of papers investigating a class of covariant equations which Jan Gov-

aerts and the �rst author, which we called `Universal Field Equations' [1]{[4]

we 
oated the idea that these equations could be employed as a model for

space time co-ordinates. It is one object of this paper to explore this idea

in somewhat greater depth. This is a purely classical discussion of a way

of describing a co-ordinate system which is su�ciently 
exible to admit the

general class of functional rede�nitions implied by covariance. It has nothing

to do with quantum e�ects like the concept of a minimum compacti�cation

radius due to T duality which rules out the the notion of an in�nitely precise

point in space time. Here the discussion will remain entirely classical and

will explore the idea that the space-time co-ordinates in D dimensions may

be represented by `
at' co-ordinates in D + 1 dimensions, which transform

under the conformal group in D+1 dimensions. There are, however two ways

to implement general covariance; one by the use of covariant derivatives, and

the other by exploting properties of determinants. In a second application

the `Universal Field Equations' may be regarded as describing membranes,

by reversing the roles of �elds and base-co-ordinates. Then the covariance of

�elds becomes the reparametrisation invariance of the new base space.

2 Multi�eld UFE

Suppose X(xi)
a; a = 1; : : : ; D; i = 1; : : : ; D + 1 denotes a set of D �elds,

in D + 1 dimensional space. They may be thought of as target space

co-ordinates which constitute a mapping from a D + 1 dimensional base

space co-odinatized by the independent variables xi. Introduce the nota-

tion Xa
i =

@Xa

@xi
; Xa

ij =
@2Xa

@xi@xj
. In addition, let Jk denote the Jacobian

@(Xa; Xb; : : : ; XD)

@(x1; : : : ; x̂k : : : ; xD+1)
where xk is the independent variable which is omitted
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in Jk. Now suppose that the vector �eld Xa satis�es the equations of motion

X
i;k

JiJkX
a
ik = 0: (2.1)

This is a direct generalisation of the Bateman equation to D �elds in D + 1

dimensions, [1], and may be written in terms of the determinant of a bordered

matrix where the diagonal blocks are of dimensions D�D and D+1�D+1

respectively as

det








0 @Xa

@xk
@Xb

@xj

P
�c

@2Xc

@xj@xk







 = 0: (2.2)

The coe�cients of the arbitrary constant parameters �c set to zero reproduce

the D equations (2.1). The solutions of these equations can be veri�ed to

possess the property that any functional rede�nition of a speci�c solution is

also a solution; i.e. the property of general covariance. A remarkable feature

of (2.1) is that the equations admit in�nitely many inequivalent Lagrangian

formulations. Suppose L depends upon the �elds Xa and their �rst deriva-

tives Xa
j through the Jacobians subject only to the constraint that L(Xa; Jj)

is a homogeneous function of the Jacobians, i.e.

D+1X
j=1

Jj
@L

@Jj
= L: (2.3)

Then the Euler variation of L with respect to the �eld Xa gives

@L

@Xa
�

@

@xi

@L

@Xa
i

=
@L

@Xa
�

@

@xi

@L

@Jj

@Jj

@Xa
i

(2.4)

=
@L

@Xa
�

@2L

@Xb@Jj

@Jj

@Xa
i

Xb
i �

@L

@Jj

@2Jj

@Xa
i @X

b
k

Xb
ik �

@2L

@Jj@Jk

@Jj

@Xa
i

@Jk

@Xb
r

Xb
ir:

The usual convention of summing over repeated indices is adhered to here.

Now by the theorem of false cofactors

D+1X
j=1

@Jk

@Xa
j

Xb
j = �abJk: (2.5)
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Then, exploiting the homogeneity of L as a function of Jk (2.3), the �rst two

terms in the last line of (2.4) cancel, and the term
@L

@Jj

@2Jj

@Xa
i @X

b
k

Xb
ik vanishes

by symmetry considerations. The remaining term,
@2L

@Jj@Jk

@Jj

@Xa
i

@Jk

@Xb
r

Xb
ir, may

be simpli�ed as follows. Di�erentiation of the homogeneity equation (2.3)

gives
D+1X
k=1

@2L

@Jj@Jk
Jk = 0: (2.6)

But since
P

k JkX
a
k = 0; 8a, together with symmetry, this implies that the

linear equations (2.6) can be solved by

@2L

@Ji@Jj
=
X
a;b

Xa
i d

abXb
j ; (2.7)

for some functions dab. Inserting this representation into (2.4) and using a

similar result to (2.5);
D+1X
j=1

@Jj

@Xa
k

Xb
j = ��abJk: (2.8)

Then, assuming da;b is invertible, as is the generic case, the last term reduces

to
P

i;k JiJkX
a
ik, which, set to zero is just the equation of motion (2.1)5

2.1 Iteration

This procedure may be iterated; Given a transformation described by the

equation (2.1), from a base space of D + 2 dimensions with co-ordinates xi
to to a target space of D + 1 with co-ordinates Yj which in turn are used as

a base space for a similar transformation to co-ordinates Xk; k = 1 : : :D the

mapping from D + 1 dimensions to D is given in terms of the determinant

of a bordered matrix of similar form to (2.2), where the diagonal blocks are

of dimensions D �D and D + 2�D + 2 respectively;

det








0 @Xa

@xk
@Xb

@xj

P
�j

@2Xj

@xj@xk







 = 0: (2.9)

5This calculation without the Xa dependence of the Lagrangian already can be found
in [1]; the new aspect here is the extension to include the �elds themselves, following the
single �eld example of [6].
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The equations which form an overdetermined set are obtained by requiring

that the determinant vanishes for all choices of �j Further iterations yield

the multi�eld UFE, discussed in [3], and the Lagrangian description is given

by a iterative procedure.

2.2 Solutions.

There are various ways to approach the question of solutions. Consider the

multi�eld UFE;

det



















0 : : : 0 X1
x1

: : : X1
xd

...
. . .

...
...

. . .
...

0 : : : 0 Xn
x1

: : : Xn
xd

X1
x1

: : : Xn
x1

Pn
i=1 �iX

i
x1x1

: : :
Pn

i=1 �iX
i
x1xd

...
. . .

...
...

. . .
...

Xxd : : : Xxd

Pn
i=1 �iX

i
x1xd

: : :
Pn

i=1 �iX
i
xdxd



















= 0; (2.10)

where �1; : : : ; �n are arbitrary constants, and the functions X1; : : : ; Xn are

independent of �i. The equations which result from setting the coe�cients

of the monomials of degree d � n in �i in the expansion of the determinant

to zero form an overdetermined set, but, as we shall show, this set possesses

many nontrivial solutions.

The equation (2.10) may be viewed as a special case of the Monge-Amp�ere

equation in d+ n dimensions, namely

det







@2u

@yi@yj







d+n

i;j=1

= 0: (2.11)

Equation (2.10) results from the restriction of u to have the form

u(yk) = u(x1; : : : ; xd; �1; : : : ; �n) =
nX
i=1

�iX
i; (2.12)

where we have set

yi = xi; i = 1; : : : ; d; yj+d = �j; j = 1; : : : ; n: (2.13)

5



Now the Monge-Amp�ere equation is equivalent to the statement that there

exists a functional dependence among the �rst derivatives uyi of u of the form

F (uy1; : : : ; uyd+n
) = 0; (2.14)

where F is an arbitrary di�erentiable function. Methods for the solution of

this equation are known [7, 8]. Returning to the target space variables Xj,

this relation becomes

F

0
BBBB@

nX
i=1

�iX
i
x1

| {z }
!1

; : : : ;
nX
i=1

�iX
i
xd

| {z }
!d

; X1; : : : ; Xn

1
CCCCA = 0: (2.15)

3 Exact Solutions of the UFE

3.1 Implicit Solutions

The general representation of a solution of this set of constraints which do

not depend upon the parameters �i evades us; however there are two cir-

cumstances in which a solution may be found. In the �rst case a class of

solutions in implicit form may be obtained by taking F to be linear in the

�rst d arguments !i. Then

F =
dX

i=1

fi(X
1; : : : ; Xn)!i = 0: (3.1)

It can be proved that this is the generic situation for the cases of two and

three �elds. In general, provided there are terms linear in �i in F , as the X i

do not depend upon �i, one expects that as a minimal requirement the terms

in F linear in �i will vanish for a solution. Equating each coe�cient of �i in

(3.1) to zero we obtain the following system of partial di�erential equations

dX
i=1

fi(X
1; : : : ; Xn)Xj

xi
= 0; j = 1; : : : ; n: (3.2)

The general solution of these equations may be represented in terms of n

arbitrary smooth functions Rj, where

Rj(fdx1 � f1xd; : : : ; fdxd�1 � fd�1xd; X
1; : : : ; Xn) = 0: (3.3)
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The solution of these equations for X i gives a wide class of solutions to the

UFE.

3.2 Explicit Solution.

There is a wide class of explicit solutions to the UFE. They are simply given

by choosing Xj(x1; : : : ; xd) to be a homogeneous function of xj of weight

zero, i.e.
dX

k=1

xk
@Xj

@xk
= 0; j = 1; : : : ; n: (3.4)

The proof of this result depends upon di�erentiation of (3.4) with respect to

the xi. A particularly illuminating example is the case of spherical polars; in

d = 3; n = 2 take

X1 = � = arctan

0
@ x3q

x21 + x22

1
A ; X2 = � = arctan

�
x2

x1

�
: (3.5)

Then these co-ordinates satisfy (2.9).

4 Conclusions

A wide class of solutions to the set of UFE which are generally covariant

has been obtained. In order to adapt the theory to apply to possible in-

tegrable membranes, it is necessary to interchange the roles of dependent

and independent variables, so that general covariance becomes reparametri-

sation invariance of the base space [2]. In order to invert the dependent and

independent variables in this fashion, it is necessary �rst to augment the

dependent variables by some additional d�n �elds Yk(xi), then consider the

xi as functions of Xj; i = 1 : : : n Although in principle xi could also depend

upon the arti�cial variables Yk; k = 1 : : : d� n, we make the restriction that

this does not occur. (See [2] for further details) In this case the variables xj
play the role of target space for an n-brane, dependent upon n co-ordinates

Xj. Since it is fully reparametrisation invariant, it may play some part in

the further understanding of string theory, but this is by no means clear.
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