2,100 research outputs found

    Surface width scaling in noise reduced Eden clusters

    Full text link
    The surface width scaling of Eden A clusters grown from a single aggregate site on the square lattice is investigated as a function of the noise reduction parameter. A two-exponent scaling ansatz is introduced and used to fit the results from simulations covering the range from fully stochastic to the zero-noise limit.Comment: 4 pages, RevTex, 3 figure

    Phase diagram of the su(8) quantum spin tube

    Full text link
    We calculate the phase diagram of an integrable anisotropic 3-leg quantum spin tube connected to the su(8) algebra. We find several quantum phase transitions for antiferromagnetic rung couplings. Their locations are calculated exactly from the Bethe Ansatz solution and we discuss the nature of each of the different phases.Comment: 10 pages, RevTeX, 1 postscript figur

    Evidence for the super Tonks-Girardeau gas

    Full text link
    We provide evidence in support of a recent proposal by Astrakharchik at al. for the existence of a super Tonks-Girardeau gas-like state in the attractive interaction regime of quasi-one-dimensional Bose gases. We show that the super Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in the integrable interacting Bose gas for which the bosons acquire hard-core behaviour. The gas-like state properties vary smoothly throughout a wide range from strong repulsion to strong attraction. There is an additional stable gas-like phase in this regime in which the bosons form two-body bound states behaving like hard-core bosons.Comment: 10 pages, 1 figure, 2 tables, additional text on the stability of the super T-G gas-like stat

    Exact solution for random walks on the triangular lattice with absorbing boundaries

    Full text link
    The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.Comment: 10 pages, Latex, IOP macro

    The Dynamics of the One-Dimensional Delta-Function Bose Gas

    Full text link
    We give a method to solve the time-dependent Schroedinger equation for a system of one-dimensional bosons interacting via a repulsive delta function potential. The method uses the ideas of Bethe Ansatz but does not use the spectral theory of the associated Hamiltonian

    Multi-level, multi-party singlets as ground states and their role in entanglement distribution

    Get PDF
    We show that a singlet of many multi-level quantum systems arises naturally as the ground state of a physically-motivated Hamiltonian. The Hamiltonian simply exchanges the states of nearest-neighbours in some network of qudits (d-level systems); the results are independent of the strength of the couplings or the network's topology. We show that local measurements on some of these qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of measurement basis at each measurement. It follows that the entanglement is highly persistent, and that through local measurements, a large amount of entanglement may be established between spatially-separated parties for subsequent use in distributed quantum computation.Comment: Corrected method for physical preparatio

    Robustness of Planar Fourier Capture Arrays to Colour Changes and Lost Pixels

    Full text link
    Planar Fourier capture arrays (PFCAs) are optical sensors built entirely in standard microchip manufacturing flows. PFCAs are composed of ensembles of angle sensitive pixels (ASPs) that each report a single coefficient of the Fourier transform of the far-away scene. Here we characterize the performance of PFCAs under the following three non-optimal conditions. First, we show that PFCAs can operate while sensing light of a wavelength other than the design point. Second, if only a randomly-selected subset of 10% of the ASPs are functional, we can nonetheless reconstruct the entire far-away scene using compressed sensing. Third, if the wavelength of the imaged light is unknown, it can be inferred by demanding self-consistency of the outputs.Comment: 15 pages including cover page, 12 figures, associated with the 9th International Conference on Position Sensitive Detector

    Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions

    Full text link
    We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons and fermions with delta-interaction and arbitrary internal degrees of freedom to the case of hard wall boundary conditions. We give an analysis of the ground state properties of fermionic systems with two internal degrees of freedom, including expansions of the ground state energy in the weak and strong coupling limits in the repulsive and attractive regimes.Comment: 27 pages, 6 figures, key reference added, typos correcte

    Magnetic Correlation Length and Universal Amplitude of the Lattice E_8 Ising Model

    Full text link
    The perturbation approach is used to derive the exact correlation length ξ\xi of the dilute A_L lattice models in regimes 1 and 2 for L odd. In regime 2 the A_3 model is the E_8 lattice realisation of the two-dimensional Ising model in a magnetic field h at T=T_c. When combined with the singular part f_s of the free energy the result for the A_3 model gives the universal amplitude fsξ2=0.061 728...f_s \xi^2 = 0.061~728... as h→0h\to 0 in precise agreement with the result obtained by Delfino and Mussardo via the form-factor bootstrap approach.Comment: 7 pages, Late

    Random walks on finite lattice tubes

    Full text link
    Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.Comment: 22 pages, 4 figure
    • …
    corecore