2,299 research outputs found

    Evidence for the super Tonks-Girardeau gas

    Full text link
    We provide evidence in support of a recent proposal by Astrakharchik at al. for the existence of a super Tonks-Girardeau gas-like state in the attractive interaction regime of quasi-one-dimensional Bose gases. We show that the super Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in the integrable interacting Bose gas for which the bosons acquire hard-core behaviour. The gas-like state properties vary smoothly throughout a wide range from strong repulsion to strong attraction. There is an additional stable gas-like phase in this regime in which the bosons form two-body bound states behaving like hard-core bosons.Comment: 10 pages, 1 figure, 2 tables, additional text on the stability of the super T-G gas-like stat

    Free energies and critical exponents of the A_1^{(1)}, B_n^{(1)}, C_n^{(1)} and D_n^{(1)} face models

    Full text link
    We obtain the free energies and critical exponents of models associated with elliptic solutions of the star-triangle relation and reflection equation. The models considered are related to the affine Lie algebras A_1^{(1)}, B_n^{(1)},C_n^{(1)} and D_n^{(1)}. The bulk and surface specific heat exponents are seen to satisfy the scaling relation 2\alpha_s = \alpha_b + 2. It follows from scaling relations that in regime III the correlation length exponent \nu is given by \nu=(l+g)/2g, where l is the level and g is the dual Coxeter number. In regime II we find \nu=(l+g)/2l.Comment: 9 pages, Latex, no figure

    Variational approach to the scaling function of the 2D Ising model in a magnetic field

    Full text link
    The universal scaling function of the square lattice Ising model in a magnetic field is obtained numerically via Baxter's variational corner transfer matrix approach. The high precision numerical data is in perfect agreement with the remarkable field theory results obtained by Fonseca and Zamolodchikov, as well as with many previously known exact and numerical results for the 2D Ising model. This includes excellent agreement with analytic results for the magnetic susceptibility obtained by Orrick, Nickel, Guttmann and Perk. In general the high precision of the numerical results underlines the potential and full power of the variational corner transfer matrix approach.Comment: 12 pages, 1 figure, 4 tables, v2: minor corrections, references adde

    Scaling and universality in the 2D Ising model with a magnetic field

    Full text link
    The scaling function of the 2D Ising model in a magnetic field on the square and triangular lattices is obtained numerically via Baxter's variational corner transfer matrix approach. The use of the Aharony-Fisher non-linear scaling variables allowed us to perform calculations sufficiently away from the critical point to obtain very high precision data, which convincingly confirm all predictions of the scaling and universality hypotheses. The results are in excellent agreement with the field theory calculations of Fonseca and Zamolodchikov as well as with many previously known exact and numerical results for the 2D Ising model. This includes excellent agreement with the classic analytic results for the magnetic susceptibility by Barouch, McCoy, Tracy and Wu, recently enhanced by Orrick, Nickel, Guttmann and Perk.Comment: 5 pages, 1 figur

    Motion and homogenization of vortices in anisotropic Type II superconductors

    Get PDF
    The motion of vortices in an anisotropic superconductor is considered. For a system of well-separated vortices, each vortex is found to obey a law of motion analogous to the local induction approximation, in which velocity of the vortex depends upon the local curvature and orientation. A system of closely packed vortices is then considered, and a mean field model is formulated in which the individual vortex lines are replaced by a vortex density

    Killing spinors are Killing vector fields in Riemannian Supergeometry

    Full text link
    A supermanifold M is canonically associated to any pseudo Riemannian spin manifold (M_0,g_0). Extending the metric g_0 to a field g of bilinear forms g(p) on T_p M, p\in M_0, the pseudo Riemannian supergeometry of (M,g) is formulated as G-structure on M, where G is a supergroup with even part G_0\cong Spin(k,l); (k,l) the signature of (M_0,g_0). Killing vector fields on (M,g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field X_s on M. Our main result is that X_s is a Killing vector field on (M,g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field X_s.Comment: 14 pages, latex, one typo correcte

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro

    Minimal Unitary Models and The Closed SU(2)-q Invariant Spin Chain

    Get PDF
    We consider the Hamiltonian of the closed SU(2)qSU(2)_{q} invariant chain. We project a particular class of statistical models belonging to the unitary minimal series. A particular model corresponds to a particular value of the coupling constant. The operator content is derived. This class of models has charge-dependent boundary conditions. In simple cases (Ising, 3-state Potts) corresponding Hamiltonians are constructed. These are non-local as the original spin chain.Comment: 19 pages, latex, no figure

    One-Dimensional Impenetrable Anyons in Thermal Equilibrium. IV. Large Time and Distance Asymptotic Behavior of the Correlation Functions

    Full text link
    This work presents the derivation of the large time and distance asymptotic behavior of the field-field correlation functions of impenetrable one-dimensional anyons at finite temperature. In the appropriate limits of the statistics parameter, we recover the well-known results for impenetrable bosons and free fermions. In the low-temperature (usually expected to be the "conformal") limit, and for all values of the statistics parameter away from the bosonic point, the leading term in the correlator does not agree with the prediction of the conformal field theory, and is determined by the singularity of the density of the single-particle states at the bottom of the single-particle energy spectrum.Comment: 26 pages, RevTeX
    • …
    corecore