40 research outputs found

    Synthesis and characterization of jellified composites form bovine bone-derived hydroxyapatite and starch as precursors for robocasting

    Get PDF
    Hydroxyapatite–starch composites solidify rapidly via jellification, making them suitable candidates for robocasting. However, many aspects related to hydroxyapatite powder characteristics, hydroxyapatite–starch interaction, and composites composition and properties need to be aligned with robocasting requirements to achieve a notable improvement in the functionality of printed scaffolds intended for bone regeneration. This article presents a preliminary evaluation of hydroxyapatite–starch microcomposites. Thermal analysis of the starting powders was performed for predicting composites’ behavior during heat-induced densification. Also, morphology, mechanical properties, and hydroxyapatite–starch interaction were evaluated for the jellified composites and the porous bodies obtained after conventional sintering, for different starch additions, and for ceramic particle size distributions. The results indicate that starch could be used for hydroxyapatite consolidation in limited quantities, whereas the composites shall be processed under controlled temperature. Due to a different mechanical behavior induced by particle size and geometry, a wide particle size distribution of hydroxyapatite powder is recommended for further robocasting ink development

    Compressive properties of pristine and SiC-Te-added MgB 2 powders, green compacts and spark-plasma-sintered bulks

    Get PDF
    Pristine and (SiC+Te)-added MgB2 powders, green and spark plasma sintered (SPS) compacts were investigated from the viewpoint of quasi-static and dynamic (Split-Hopkinson Pressure Bar, SHPB) compressive mechanical properties The amount of the additive (SiC+Te) was selected to be the optimum one for maximization of the superconducting functional parameters. Pristine and added MgB2 show very similar compressive parameters (tan δ, fracture strength, Vickers hardness, others) and fragment size in the SHPB test. However, for the bulk SPSed samples the ratio of intergranular to transgranular fracturing changes, the first one being stronger in the added sample. This is reflected in the quasi-static KIC that is higher for the added sample. Despite this result, sintered samples are brittle and have roughly similar fragmentation behavior as for brittle engineering ceramics. In the fragmentation process, the composite nature of our samples should be considered with a special focus on MgB2 blocks (colonies) that show the major contribution to fracturing. The Glenn-Chudnovsky model of fracturing under dynamic load provides the closest values to our experimental fragment size data

    Facile synthesis and characterization of hydroxyapatite particles for high value nanocomposites and biomaterials

    Get PDF
    Lately Hydroxyapatite has gained a lot of research interest and intense focus due to its structural as well as compositional similarity to the components of human bone mineral. The conversion of calcium-rich precursors to hydroxyapatite could lead to the development of a new sustainable alternative with a valuable environmental and socio-economically impact. Still, current approaches faces lots of challenges in terms of synthesis parameters compatible to a reproducible route for calcium phosphates (hydroxyapatite included) synthesis. The optimization of Rathje synthesis route and characterization of biogenic derived calcium phosphates from dolomitic marble and Mytilus galloprovincialis seashells, constitutes the main goals of this study. The synthesized materials were characterized using FTIR, SEM coupled with EDS, and X-ray diffraction at all synthesis stages. Precursors were also subjected to thermal analysis and differential scanning calorimetry for thermal transformations investigations and dissociation temperature setting. This study suggests that acid quantity and magnetic stirring are the key-factors for Ca/P molar ratio adjustment, hence for the amount of naturally-derived hydroxyapatite. This research also contributes to the development of new strategies for further optimization of the conversion procedure and removal of residual components

    Antimicrobial activity of MgB2 powders produced via reactive liquid infiltration method

    Get PDF
    We report for the first time on the antimicrobial activity of MgB2 powders produced via the Reactive Liquid Infiltration (RLI) process. Samples with MgB2 wt.% ranging from 2% to 99% were obtained and characterized, observing different levels of grain aggregation and of impurity phases. Their antimicrobial activity was tested against Staphylococcus aureus ATCC BAA 1026, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. A general correlation is observed between the antibacterial activity and the MgB2 wt.%, but the sample microstructure also appears to be very important. RLI-MgB2 powders show better performances compared to commercial powders against microbial strains in the planktonic form, and their activity against biofilms is also very similar

    Tunable Microstructure and Morphology of the Self-Assembly Hydroxyapatite Coatings on ZK60 Magnesium Alloy Substrates Using Hydrothermal Methods

    No full text
    Hydroxyapatite coatings have been widely used to improve the corrosion resistance of biodegradable magnesium alloys. In this paper, in order to manufacture the ideal hydroxyapatite (HA) coating on the ZK60 magnesium substrate by hydrothermal method, formation mechanism of enhanced hydroxyapatite (HA) coatings, influence of pH values of the precursor solution on the HA morphology, corrosion resistance and cytotoxicity of HA coatings have been investigated. Results show that the growth pattern of the HA is influenced by the local pH value. HA has a preferential c-axis and higher crystallinity in the alkaline environment developing a nanorod-like structure, while in acid and neutral environments it has a preferential growth along the a(b)-plane with a lower crystallinity, developing a nanosheet-like structure. The different morphology and microstructure lead to different degradation behavior and performance of HA coatings. Immersion and electrochemical tests show that the neutral environment promote formation of HA coatings with high corrosion resistance. The cell culture experiments confirm that the enhanced corrosion resistance assure the biocompatibility of the substrate-coating system. In general, the HA coating prepared in neutral environment shows great potential in surface modification of magnesium alloys

    NiTi coated with oxide and polymer films in the in vivo healing processes

    No full text
    Plates of NiTi chemically etched, electro-polished, and sol–gel coated with XO2 (X = Ti, Si, Zr), or coated with oxides and dip-coated polymers of Dextro-Levo-lactide-co-glycolide (DL-PLG, 0.4 μm thickness), Dextro-Levo-lactic acid (DL-PLA, 1.3 μm) or poly methyl methacrylate polymer (PMMA, 1.7 μm) were obtained. Smooth and uniform NiTi surfaces without significant pitting, as revealed by AFM, were prepared for chemical etching of 120 s in HF:HNO3:H2O = 1:5:4, followed by electropolishing 120 s in H2SO4:CH3OH:H2O = 1:4:5 electrolyte and using a potential of 9 V. Dip-coated layer of PMMA has shown cracks and large pores and was eliminated from further experiments. Samples of pristine and coated NiTi were in vivo implanted into rabbits and extracted after 10 and 60 days. Clinically, all implants are biocompatible; all rabbits survived and a recovery process was observed for all cases. NiTi covered with SiO2, DL-PLG and SiO2/DL-PLG have shown the best healing evolution. For 10 and 60 days good recovery was found also for NiTi coated with TiO2. Coatings of ZrO2 and ZrO2/DL-PLG have shown the poorest results. The oxide coating and the roughness RZJIS that contains information on the ‘deep’ large areas in the coatings show the strongest influence on the healing processes. Work indicates the possibility of space- and time- scale controlled variation of the functional properties. Keywords: NiTi alloy, Coating of TiO2, SiO2, ZrO2, DL-PLG, DL-PLA, PMMA, Roughness, In vivo tes

    Finite element analysis of a modified short hip endoprosthesis

    No full text
    A finite element simulation of the mechanical static features for a modified short hip endoprosthesis was performed. The corkscrew-like femoral stem was modified introducing more turns of the thread. By such an approach it is expected that for some cases the mechanical fixation of the prosthesis to the bone will be improved or the use of the cement for bonding is not necessary. Our scenario was estimated for titanium and stainless steel, and both materials show good safety factors. Mechanical stress is expected to be distributed more uniform in the bone for the new design with more turns of thread

    Assessment of Hot Corrosion in Molten Na2SO4 and V2O5 of Inconel 625 Fabricated by Selective Laser Melting versus Conventional Technology

    No full text
    Inconel 625 samples, obtained by Selective Laser Melting (SLM) and conventional technology, were tested for hot corrosion resistance against a molten mixture of Na2SO4 and V2O5. The assessments were performed in air, at 900 °C with exposure time of up to 96 h, and at 1000 °C for 8 h. Weight gain was higher for samples obtained by SLM, with 37.4% after 8 h, 3.98% after 24 h, 4.46% after 48 h, and 5.8% after 96 h at 900 °C (22.6% at 1000 °C, 8 h). Three stages of corrosion were observed, the first and last with a high corrosion rate, while the second one showed a slower corrosion rate. Corrosion behaviour depends on the morphology of the grain boundary, which can influence the infiltration of corrosive salts, and on the formation of Cr2NiO4 compound, which acts as a temporary barrier
    corecore