6 research outputs found

    Measurement of analysing powers for neutron scattering on CH2, CH, C and Cu target for momenta from 3.0 to 4.2 GeV/c

    Get PDF
    During two beam runs in the years 2016 and 2017, the analyzing powers (Ay) for protons and neutrons scattering on CH2, CH, C and Cu targets were measured at the nucleon momentum from 3.0 to 4.2 GeV/c with the ALPOM2 setup at the Nuclotron accelerator. The data for polarized neutron beam are obtained for the first time, thanks to the unique polarized deuteron beam that is presently available up to 13 GeV/c. Earlier, analyzing powers for polarized neutrons had been measured only for thin hydrogen targets. Cross sections and analyzing powers for np, for both elastic scattering and charge exchange are known up to 29 GeV/c. No data existed for thick analyzers. The measurement of the angular dependence of Ay for the neutron is essential to the continuation of the neutron form factor measurements to the highest possible transferred momentum-Q2 at the Jefferson Laboratory. The reaction p+Cu(W), with the detection of a neutron in the forward direction by a hadron calorimeter, can be used for the measurement of the proton polarization at the future NICA collider

    Study of strange matter production in the heavy ion collisions at NUCLOTRON

    No full text
    It is proposed to install an experimental setup in the fixed-target hall of the Nuclotron with the final goal to perform a research program focused on the production of strange matter in heavyion collisions at beam energies between 2 and 6 A GeV. The basic setup will comprise a large acceptance dipole magnet with inner tracking detector modules based on double-sided Silicon micro-strip sensors and GEMs. The outer tracking will be based on the drift chambers and straw tube detector. Particle identification will be based on the time-of-flight measurements. This setup will be sufficient perform a comprehensive study of strangeness production in heavy-ion collisions, including multi-strange hyperons, multi-strange hypernuclei, and exotic multi-strange heavy objects. These pioneering measurements would provide the first data on the production of these particles in heavy-ion collisions at Nuclotron beam energies, and would open an avenue to explore the third (strangeness) axis of the nuclear chart. The extension of the experimental program is related with the study of in-medium effects for vector mesons decaying in hadronic modes. The studies of the NN and NA reactions for the reference is assumed
    corecore