46 research outputs found

    Path-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let G=(V,E)G=(V,E) be an nn-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a {\em single-source shortest-path tree} (SPT) of GG with a \emph{sparse} set of \emph{auxiliary} edges selected from EE, in order to create a structure which tolerates effectively a \emph{path failure} in the SPT. This consists of a simultaneous fault of a set FF of at most ff adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k1k \geq 1, it is possible to provide a very sparse (i.e., of size O(knf1+1/k)O(kn\cdot f^{1+1/k})) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k1)(2F+1)(2k-1)(2|F|+1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 33 and a size of O(nlogn)O(n \log n) for the special case f=2f=2, and that it can be converted into a very efficient \emph{approximate-distance sensitivity oracle}, that allows to quickly (even in optimal time, if k=1k=1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201

    Vertex Fault Tolerant Additive Spanners

    Full text link
    A {\em fault-tolerant} structure for a network is required to continue functioning following the failure of some of the network's edges or vertices. In this paper, we address the problem of designing a {\em fault-tolerant} additive spanner, namely, a subgraph HH of the network GG such that subsequent to the failure of a single vertex, the surviving part of HH still contains an \emph{additive} spanner for (the surviving part of) GG, satisfying dist(s,t,H{v})dist(s,t,G{v})+βdist(s,t,H\setminus \{v\}) \leq dist(s,t,G\setminus \{v\})+\beta for every s,t,vVs,t,v \in V. Recently, the problem of constructing fault-tolerant additive spanners resilient to the failure of up to ff \emph{edges} has been considered by Braunschvig et. al. The problem of handling \emph{vertex} failures was left open therein. In this paper we develop new techniques for constructing additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is an FT-spanner with additive stretch 22 and O~(n5/3)\widetilde{O}(n^{5/3}) edges. Our second result is an FT-spanner with additive stretch 66 and O~(n3/2)\widetilde{O}(n^{3/2}) edges. The construction algorithm consists of two main components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying procedure suitably adopted to failure prone settings. Finally, we also describe two constructions for {\em fault-tolerant multi-source additive spanners}, aiming to guarantee a bounded additive stretch following a vertex failure, for every pair of vertices in S×VS \times V for a given subset of sources SVS\subseteq V. The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges)

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)tdG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,vVu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k1k\ge 1 and ϵ>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k1)(1+ϵ)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))Oϵ(kn1/k/logk)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(logk)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201

    Approximate distance oracles for unweighted graphs in expected O

    No full text

    Randomized graph data-structures for approximate shortest path problem

    No full text

    A Simple and Linear Time Randomized Algorithm for Computing Sparse Spanners in Weighted Graphs

    No full text
    Let G = (V,E) be an undirected weighted graph on |V | = n vertices and |E| = m edges. A t-spanner of the graph G, for any t 1, is a subgraph (V,ES), ES E, such that the distance between any pair of vertices in the subgraph is at most t times the distance between them in the graph G. Computing a t-spanner of minimum size (number of edges) has been a widely studied and well-motivated problem in computer science. In this paper we present the first linear time randomized algorithm that computes a t-spanner of a given weighted graph. Moreover, the size of the t-spanner computed essentially matches the worst case lower bound implied by a 43-year old girth lower bound conjecture made independently by Erds, Bollobás, and Bondy & Simonovits.Our algorithm uses a novel clustering approach that avoids any distance computation altogether. This feature is somewhat surprising since all the previously existing algorithms employ computation of some sort of local or global distance information, which involves growing either breadth first search trees up to (t)-levels or full shortest path trees on a large fraction of vertices. The truly local approach of our algorithm also leads to equally simple and efficient algorithms for computing spanners in other important computational environments like distributed, parallel, and external memory. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 200

    Improved algorithms for all-pairs approximate shortest paths in weighted graphs

    No full text
    The all-pairs approximate shortest-paths problem is an interesting variant of the classical all-pairs shortest-paths problem in graphs. The problem aims at building a data-structure for a given graph with the following two features. Firstly, for any two vertices, it should report an {\emph{approximate}} shortest path between them, that is, a path which is longer than the shortest path by some {\emph{small}} factor. Secondly, the data-structure should require less preprocessing time (strictly sub-cubic) and occupy optimal space (sub-quadratic), at the cost of this approximation. In this paper, we present algorithms for computing all-pairs approximate shortest paths in a weighted undirected graph. These algorithms significantly improve the existing results for this problem

    Approximate distance oracle for unweighted graphs in Õ(n²) time

    No full text
    Let G(V, E) be an undirected weighted graph with |V| = n, |E| = m. Recently Thorup and Zwick introduced a remarkable data-structure that stores all pairs approximate distance information implicitly in o(n2) space, and yet answers any approximate distance query in constant time. They named this data-structure approximate distance oracle because of this feature. Given an integer k < 1, a (2k-1)-approximate distance oracle requires O(kn1+1/k) space and answers a (2k-1)-approximate distance query in O(k) time. Thorup and Zwick showed that a (2k - 1)-approximate distance oracle can be computed in O(kmn1/k) time, and posed the following question : Can (2k - 1)-approximate distance oracle be computed in Õ(n2) time? In this paper, we answer their question in affirmative for unweighted graphs. We present an algorithm that computes (2k -1)-approximate distance oracle for a given unweighted graph in Õ(n2) time. One of the new ideas used in the improved algorithm also leads to the first linear time algorithm for computing an optimal size (2, 1)-spanner of an unweighted graph
    corecore