2 research outputs found

    Prevalence and clinical outcomes of dystrophin-associated dilated cardiomyopathy without severe skeletal myopathy

    Get PDF
    Aims: Dilated cardiomyopathy (DCM) associated with dystrophin gene (DMD) mutations in individuals with mild or absent skeletal myopathy is often indistinguishable from other DCM forms. We sought to describe the phenotype and prognosis of DMD associated DCM in DMD mutation carriers without severe skeletal myopathy. Methods and results: At 26 European centres, we retrospectively collected clinical characteristics and outcomes of 223 DMD mutation carriers (83% male, 33 ± 15 years). A total of 112 individuals (52%) had DCM at first evaluation [n = 85; left ventricular ejection fraction (LVEF) 34 ± 11.2%] or developed DCM (n = 27; LVEF 41.3 ± 7.5%) after a median follow-up of 96 months (interquartile range 5–311 months). DCM penetrance was 45% in carriers older than 40 years. DCM appeared earlier in males and was independent of the type of mutation, presence of skeletal myopathy, or elevated serum creatine kinase levels. Major adverse cardiac events (MACE) occurred in 22% individuals with DCM, 18% developed end-stage heart failure and 9% sudden cardiac death or equivalent. Skeletal myopathy was not associated with survival free of MACE in patients with DCM. Decreased LVEF and increased left ventricular end-diastolic diameter at baseline were associated with MACE. Individuals without DCM had favourable prognosis without MACE or death during follow-up. Conclusions: DMD-associated DCM without severe skeletal myopathy is characterized by incomplete penetrance but high risk of MACE, including progression to end-stage heart failure and ventricular arrhythmias. DCM onset is the major determinant of prognosis with similar survival regardless of the presence of skeletal myopathy

    Alpha-protein kinase 3 (ALPK3)-truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy.

    Get PDF
    AIMS: The aim of this study was to determine the frequency of heterozygous truncating ALPK3 variants (ALPK3tv) in patients with hypertrophic cardiomyopathy (HCM) and confirm their pathogenicity using burden testing in independent cohorts and family co-segregation studies. METHODS AND RESULTS : In a discovery cohort of 770 index patients with HCM, 12 (1.56%) were heterozygous for ALPK3tv [odds ratio(OR) 16.01, 95% confidence interval (CI) 7.89-29.74, P < 8.36e-11] compared to the Genome Aggregation Database (gnomAD) population. In a validation cohort of 2047 HCM probands, 32 (1.56%) carried heterozygous ALPK3tv (OR 16.17, 95% CI 10.31-24.87, P < 2.2e-16, compared to gnomAD). Combined logarithm of odds score in seven families with ALPK3tv was 2.99. In comparison with a cohort of genotyped patients with HCM (n = 1679) with and without pathogenic sarcomere gene variants (SP+ and SP-), ALPK3tv carriers had a higher prevalence of apical/concentric patterns of hypertrophy (60%, P < 0.001) and of a short PR interval (10%, P = 0.009). Age at diagnosis and maximum left ventricular wall thickness were similar to SP- and left ventricular systolic impairment (6%) and non-sustained ventricular tachycardia (31%) at baseline similar to SP+. After 5.3 ± 5.7 years, 4 (9%) patients with ALPK3tv died of heart failure or had cardiac transplantation (log-rank P = 0.012 vs. SP- and P = 0.425 vs. SP+). Imaging and histopathology showed extensive myocardial fibrosis and myocyte vacuolation. CONCLUSIONS : Heterozygous ALPK3tv are pathogenic and segregate with a characteristic HCM phenotype
    corecore