16,289 research outputs found

    Field Theories on Null Manifolds

    No full text
    We argue that generic field theories defined on null manifolds should have an emergent BMS or conformal Carrollian structure. We then focus on a simple interacting conformal Carrollian theory, viz. Carrollian scalar electrodynamics. We look at weak (on-shell) and strong invariance (off-shell) of its equations of motion under conformal Carrollian symmetries. Helmholtz conditions are necessary and sufficient conditions for a set of equations to arise from a Lagrangian. We investigate whether the equations of motion of Carrollian scalar electrodynamics satisfy these conditions. Then we proposed an action for the electric sector of the theory. This action is the first example for an interacting conformal Carrollian Field Theory. The proposed action respects the finite and infinite conformal Carrollian symmetries in d = 4. We calculate conserved charges corresponding to these finite and infinite symmetries and then rewrite the conserved charges in terms of the canonical variables. We finally compute the Poisson brackets for these charges and confirm that infinite Carrollian conformal algebra is satisfied at the level of charges

    Evolution of Topological Defects During Inflation

    Full text link
    Topological defects can be formed during inflation by phase transitions as well as by quantum nucleation. We study the effect of the expansion of the Universe on the internal structure of the defects. We look for stationary solutions to the field equations, i.e. solutions that depend only on the proper distance from the defect core. In the case of very thin defects, whose core dimensions are much smaller than the de Sitter horizon, we find that the solutions are well approximated by the flat space solutions. However, as the flat space thickness parameter δ0\delta_0 increases we notice a deviation from this, an effect that becomes dramatic as δ0\delta_0 approaches (H)1/2(H)^{-1}/{\sqrt 2}. Beyond this critical value we find no stationary solutions to the field equations. We conclude that only defects that have flat space thicknesses less than the critical value survive, while thicker defects are smeared out by the expansion.Comment: 14 page

    Measurement of retinal vessel widths from fundus images based on 2-D modeling

    Get PDF
    Changes in retinal vessel diameter are an important sign of diseases such as hypertension, arteriosclerosis and diabetes mellitus. Obtaining precise measurements of vascular widths is a critical and demanding process in automated retinal image analysis as the typical vessel is only a few pixels wide. This paper presents an algorithm to measure the vessel diameter to subpixel accuracy. The diameter measurement is based on a two-dimensional difference of Gaussian model, which is optimized to fit a two-dimensional intensity vessel segment. The performance of the method is evaluated against Brinchmann-Hansen's half height, Gregson's rectangular profile and Zhou's Gaussian model. Results from 100 sample profiles show that the presented algorithm is over 30% more precise than the compared techniques and is accurate to a third of a pixel

    Approximation of corner polyhedra with families of intersection cuts

    Full text link
    We study the problem of approximating the corner polyhedron using intersection cuts derived from families of lattice-free sets in Rn\mathbb{R}^n. In particular, we look at the problem of characterizing families that approximate the corner polyhedron up to a constant factor, which depends only on nn and not the data or dimension of the corner polyhedron. The literature already contains several results in this direction. In this paper, we use the maximum number of facets of lattice-free sets in a family as a measure of its complexity and precisely characterize the level of complexity of a family required for constant factor approximations. As one of the main results, we show that, for each natural number nn, a corner polyhedron with nn basic integer variables and an arbitrary number of continuous non-basic variables is approximated up to a constant factor by intersection cuts from lattice-free sets with at most ii facets if i>2n1i> 2^{n-1} and that no such approximation is possible if i2n1i \leq 2^{n-1}. When the approximation factor is allowed to depend on the denominator of the fractional vertex of the linear relaxation of the corner polyhedron, we show that the threshold is i>ni > n versus ini \leq n. The tools introduced for proving such results are of independent interest for studying intersection cuts

    Gravity of higher-dimensional global defects

    Full text link
    Solutions of Einstein's equations are found for global defects in a higher-dimensional spacetime with a nonzero cosmological constant Lambda. The defect has a (p-1)-dimensional core (brane) and a `hedgehog' scalar field configuration in the n extra dimensions. For Lambda = 0 and n > 2, the solutions are characterized by a flat brane worldsheet and a solid angle deficit in the extra dimensions. For Lambda > 0, one class of solutions describes spherical branes in an inflating higher-dimensional universe. Instantons obtained by a Euclidean continuation of such solutions describe quantum nucleation of the entire inflating brane-world, or of a spherical brane in an inflating higher-dimensional universe. For Lambda < 0, one class of solutions exhibits an exponential warp factor. It is similar to spacetimes previously discussed by Randall and Sundrum for n = 1 and by Gregory for n = 2.Comment: 18 pages, no figures, uses revte

    Novel universality classes of coupled driven diffusive systems

    Full text link
    Motivated by the phenomenologies of dynamic roughening of strings in random media and magnetohydrodynamics, we examine the universal properties of driven diffusive system with coupled fields. We demonstrate that cross-correlations between the fields lead to amplitude-ratios and scaling exponents varying continuosly with the strength of these cross-correlations. The implications of these results for experimentally relevant systems are discussed.Comment: To appear in Phys. Rev. E (Rapid Comm.) (2003

    Helioseismic analysis of the hydrogen partition function in the solar interior

    Full text link
    The difference in the adiabatic gradient gamma_1 between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov & Dappen 1998). The effect stems from internal partition function of hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90% of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium-abundance of the solar convection zone.Comment: 30 pages, 4 figures, 1 table. Revised version submitted to Ap

    Changes in the sensitivity of solar p-mode frequency shifts to activity over three solar cycles

    Get PDF
    Low-degree solar p-mode observations from the long-lived Birmingham Solar Oscillations Network (BiSON) stretch back further than any other single helioseismic data set. Results from BiSON have suggested that the response of the mode frequency to solar activity levels may be different in different cycles. In order to check whether such changes can also be seen at higher degrees, we compare the response of medium-degree solar p-modes to activity levels across three solar cycles using data from Big Bear Solar Observatory (BBSO), Global Oscillation Network Group (GONG), Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI), by examining the shifts in the mode frequencies and their sensitivity to solar activity levels. We compare these shifts and sensitivities with those from radial modes from BiSON. We find that the medium-degree data show small but significant systematic differences between the cycles, with solar cycle 24 showing a frequency shift about 10 per cent larger than cycle 23 for the same change in activity as determined by the 10.7 cm radio flux. This may support the idea that there have been changes in the magnetic properties of the shallow subsurface layers of the Sun that have the strongest influence on the frequency shifts.Comment: 6 pages, 3 figures, accepted by MNRAS 3rd July 201
    corecore