35 research outputs found

    Metal nanoparticle alters adenine induced charge transfer kinetics of vitamin K3 in magnetic field

    Get PDF
    In this article, we highlight the alterations in the photoinduced electron transfer (ET) and hydrogen atom transfer (HAT) pathways between an anti-tumor drug vitamin-K3 (MQ) and a nucleobase adenine (ADN) in the presence of gold (Au) and iron (Fe) nanoparticles (NPs). Inside the confined micellar media, with laser flash photolysis corroborated with an external magnetic field (MF), we have detected the transient geminate radicals of MQ and ADN, photo-generated through ET and HAT. We observe that the presence of AuNP on the MQ-ADN complex (^(Au)MQ-ADN) assists HAT by limiting the ET channel, on the other hand, FeNP on the MQ-ADN complex (^(Fe)MQ-ADN) mostly favors a facile PET. We hypothesize that through selective interactions of the ADN molecules with AuNP and MQ molecules with FeNP, a preferential HAT and PET process is eased. The enhanced HAT and PET have been confirmed by the escape yields of radical intermediates by time-resolved transient absorption spectroscopy in the presence of MF

    Design and Synthesis of Fluorescent Carbon Dot Polymer and Deciphering Its Electronic Structure

    Get PDF
    Herein we report the one-pot synthesis of a fluorescent polymer-like material (pCD) by exploiting ruthenium-doped carbon dots (CDs) as building blocks. The unusual spectral profiles of pCDswith double-humped periodic excitation dependent photoluminescence (EDPL), and the regular changes in their corresponding average lifetime indicate the formation of high energy donor states and low energy aggregated states due to the overlap of molecular orbitals throughout the chemically switchable π-network of CDs on polymerization. To probe the electronic distribution of pCDs, we have investigated the occurrence of photoinduced electron transfer with a model electron acceptor, menadione using transient absorption technique, corroborated with low magnetic field, followed by identification of the transient radical ions generated through electron transfer. The experimentally obtained B_(1/2) value, a measure of the hyperfine interactions present in the system, indicates the presence of highly conjugated π-electron cloud in pCDs. The mechanism of formation of pCDs and the entire experimental findings have further been investigated through molecular modeling and computational modeling. The DFT calculations demonstrated probable electronic transitions from the surface moieties of pCDs to the tethered ligands

    Redox Modifications of Carbon Dots Shape Their Optoelectronics

    Get PDF
    Carbon dots (CDs) are 1–10 nm scaled complex nanostructures with a wide range of applications and show unconventional photophysical behavior upon excitation. In this article, we have unveiled some of the underlying mechanisms and excited state dynamics of CDs by perturbing their interface with oxidizing and reducing agents. With no substantial alteration in size of surface-treated oxidized (^OCDs), reduced (^RCDs), and untreated CDs (^UCDs), we observe marked changes in their charge transport properties and diverse spectral signatures in singlet and triplet excited states. Fine tuning of the spectral behavior of nanomaterials is often treated as an outcome of quantum confinement of the excitons. Herein with different spectroscopic techniques along with conducting atomic force microscopy and triplet–triplet absorption, we elucidate that, not just confinement, the structural modification at the surface also dictates optoelectronic behavior by altering some properties such as energy band gap, quantum tunneling across the metal–CD–metal junction, and yield of triplet excitons

    Design and Synthesis of Fluorescent Carbon Dot Polymer and Deciphering Its Electronic Structure

    Get PDF
    Herein we report the one-pot synthesis of a fluorescent polymer-like material (pCD) by exploiting ruthenium-doped carbon dots (CDs) as building blocks. The unusual spectral profiles of pCDswith double-humped periodic excitation dependent photoluminescence (EDPL), and the regular changes in their corresponding average lifetime indicate the formation of high energy donor states and low energy aggregated states due to the overlap of molecular orbitals throughout the chemically switchable π-network of CDs on polymerization. To probe the electronic distribution of pCDs, we have investigated the occurrence of photoinduced electron transfer with a model electron acceptor, menadione using transient absorption technique, corroborated with low magnetic field, followed by identification of the transient radical ions generated through electron transfer. The experimentally obtained B_(1/2) value, a measure of the hyperfine interactions present in the system, indicates the presence of highly conjugated π-electron cloud in pCDs. The mechanism of formation of pCDs and the entire experimental findings have further been investigated through molecular modeling and computational modeling. The DFT calculations demonstrated probable electronic transitions from the surface moieties of pCDs to the tethered ligands

    The influence of trivalent lanthanide ions on the magnetic field effect of pyrene-dimethylaniline exciplex luminescence

    No full text
    It is observed that the lanthanide acetylacetonates (Ln(acac)3) quench the magnetic field effect of pyrene-dimethylaniline exciplex luminescence. The quenching rate constants (Q) for the different Ln3+ ions follow the same trend as was previously observed in the photolysis of quinones and ketones in micellar media. The parallelism of Qs with spin-only moments of Ln3+ ions puzzled previous workers. We have noted a correlation of Qs with the square-root of the de Gennes factor G = (g - 1 )2J(J + 1), and offer an explanation of our observation on the basis of Heisenberg exchange interaction

    Time-resolved studies of the effect of a magnetic field on exciplex luminescence

    No full text
    Time-resolved studies of the magnetic field effect on pyrene-dimethylaniline exciplex luminescence in non-alcoholic solvent mixtures (dielectric constant of 16) have been performed with the help of a time-correlated single-photon counting technique. The shape of the time-variation curve is interpreted in terms of a simple analytical model

    Accelerator and radiation physics

    No full text
    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characterization, dose mapping procedures and simulation of radiation environment are also discussed
    corecore