183 research outputs found

    Brain rhythms define distinct interaction networks with differential dependence on anatomy

    Get PDF
    Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation, and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, networks of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms. Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm per module. To understand how this distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical projection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the gamma rhythm

    Invasive left ventricle pressure-volume analysis: overview and practical clinical implications

    Get PDF
    Ventricular pressure-volume (PV) analysis is the reference method for the study of cardiac mechanics. Advances in calibration algorithms and measuring techniques brought new perspectives for its application in different research and clinical settings. Simultaneous PV measurement in the heart chambers offers unique insights into mechanical cardiac efficiency. Beat to beat invasive PV monitoring can be instrumental in the understanding and management of heart failure, valvular heart disease, and mechanical cardiac support. This review focuses on intra cardiac left ventricular PV analysis principles, interpretation of signals, and potential clinical applications

    Phlebovirus diversity in ticks from livestock in arid ecologies in Kenya

    Get PDF
    DATA AVAILABILITY : Data will be made available on request.Phleboviruses are emerging pathogens of public health importance. However, their association with ticks is poorly described, particularly in Africa. Here, adult ticks infesting cattle, goats and sheep were collected in two dryland pastoralist ecosystems of Kenya (Baringo and Kajiado counties) and were screened for infection with phleboviruses. Ticks mainly belonged to the species Rhipicephalus appendiculatus, Hyalomma impeltatum, and Hyalomma rufipes. A fragment of the RNA-dependent RNA polymerase (RdRp) gene was identified in thirty of 671 tick pools, of which twenty-nine were from livestock sampled in Baringo county. Phylogenetic analyses revealed that twenty-five sequences were falling in three clades within the group of tick-associated phleboviruses. The sequences of the three clades showed nucleotide distances 8%, 19% and 22%, respectively, to previously known viruses suggesting that these sequence fragments may belong to three distinct viruses. Viruses of the group of tick-associated phleboviruses have been found in several countries and continents but so far have not been associated with disease in humans or animals. In addition, five sequences were found to group with the sandflyassociated phleboviruses Bogoria virus, Perkerra virus and Ntepes virus recently detected in the same region. Further studies are needed to investigate the transmission and maintenance cycles of these viruses, as well as to assess their potential to infect vertebrates.The Deutsche Forschungsgemeinschaft, the German Center for Infection Research (DZIF), Germany, a German Academic Exchange Service (DAAD) through the icipe ARPPIS-DAAD scholarship and a UP postgraduate bursary, a Wellcome Trust International Intermediate Fellowship, the Norad-funded project Combatting Arthropod Pests for better Health, Food and Climate Resilience, Swedish International Development Cooperation Agency (Sida), Swiss Agency for Development and Cooperation (SDC), Australian Centre for International Agricultural Research (ACIAR), Federal Democratic Republic of Ethiopia and the Government of the Republic of Kenya.https://www.elsevier.com/locate/ttbdisam2024Zoology and EntomologySDG-03:Good heatlh and well-bein

    Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae)

    Get PDF
    DATA AVAILABILITY STATEMENT : The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.INTRODUCTION : Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. METHODS : Adult Culicoides were surveyed using CDC light traps in two semiarid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). RESULTS : Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. CONCLUSION : The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.The Deutsche Forschungsgemeinschaft, a German Academic Exchange Service (DAAD) through the icipe ARPPIS-DAAD scholarship, a UP postgraduate bursary, the Norad-funded project Combatting Arthropod Pests for better Health, Food and Climate Resilience and ICIPE core donors: Swiss Agency for Development and Cooperation (SDC), Switzerland; Swedish International Development Cooperation Agency (Sida), Sweden; Australian Centre for International Agricultural Research (ACIAR), Federal Democratic Republic of Ethiopia and the Government of the Republic of Kenya.http://www.frontiersin.org/Microbiologyam2024Zoology and EntomologySDG-03:Good heatlh and well-beingSDG-15:Life on lan
    corecore