3 research outputs found

    Pulegone and Eugenol Oral Supplementation in Laboratory Animals: Results from Acute and Chronic Studies

    Get PDF
    Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals’ body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination

    The red seaweed Grateloupia turuturu prevents epidermal dysplasia in HPV16-transgenic mice

    Get PDF
    Abstract: The role of dietary profiles in promoting or reducing the risk of multiple types of cancer is increasingly clear, driving the search for balanced foods and nutraceuticals. The red seaweed Grateloupia turuturu has been used as human food showing a balanced nutritional profile. This study aims to test in vivo chemopreventive effects of G. turuturu against cutaneous pre-malignant lesions in transgenic mice for the human papillomavirus type 16 (HPV16). Forty-four female HPV+/− or HPV−/− mice received a standard diet or were supplemented with 10% G. turuturu for 22 consecutive days. Cutaneous lesions (ear and chest skin) were identified histologically. Complementarily, the weights and histology of internal organs as well as blood biochemical and DNA integrity parameters were also assessed. G. turuturu consistently reduced the incidence of epidermal dysplasia induced by HPV16 on both cutaneous sites. Moreover, biochemical, DNA integrity and histological analyses confirmed G. turuturu edibility as no signs of toxicity were found. Dietary supplementation with G. turuturu is an effective and safe chemopreventive strategy in this model

    Dietary supplementation with chestnut (Castanea sativa) reduces abdominal adiposity in FVB/n mice: A preliminary study

    No full text
    The production of chestnut (Castanea sativa Miller) is mostly concentrated in Europe. Chestnut is recognized by its high content of antioxidants and phytosterols. This work aimed to evaluate the effects of dietary chestnut consumption over physiological variables of FVB/n mice. Eighteen FVB/n male 7-month-old mice were randomly divided into three experimental groups (n = 6): 1 (control group) fed a standard diet; 2 fed a diet supplemented with 0.55% (w/w) chestnut; and 3 supplemented with 1.1% (w/w) chestnut. Body weight, water, and food intake were recorded weekly. Following 35 days of supplementation, the mice were sacrificed for the collection of biological samples. Chestnut supplementation at 1.1% reduced abdominal adipose tissue. Lower serum cholesterol was also observed in animals supplemented with chestnut. There were no significant differences concerning the incidence of histological lesions nor in biochemical markers of hepatic damage and oxidative stress. These results suggest that chestnut supplementation may contribute to regulate adipose tissue deposition.This work is supported by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020, CIMO (UIDB/00690/2020) and UIDB/CVT/00772/2020 Interreg Program for the financial support of the Project IBERPHENOL, Project Number 0377_IBERPHENOL_6_E; co-financed by European Regional Development Fund (ERDF) through POCTEP 2014-2020. This work was also supported by VALORIZEBYPRODUCTS Project, reference n.¿ 029152, funded by Portuguese Foundation for Science and Technology (FCT) and co-financed by the European Regional Development Fund (FEDER) through COMPETE 2020 - Operational Competitiveness and Internationalization Programme (POCI). This work was also financially supported by Project UID/EQU/00511/2019 - Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE funded by national funds through FCT/MCTES (PIDDAC) and Project “LEPABE-2-ECO-INNOVATION” – NORTE-01-0145-FEDER-000005, funded by Norte Portugal Regional Operational Programme (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), by the Research Centre of the Portuguese Institute of Oncology of Porto (CI-IPOP 37-2016) and by the Interact R&D project, operation number NORTE-01-0145-FEDER-000017, in its ISAC research line, co-financed by the ERDF through NORTE 2020. This work was also supported by PhD fellowship SFRH/BD/136747/2018
    corecore