27 research outputs found

    TIP peptide inhalation in experimental acute lung injury: effect of repetitive dosage and different synthetic variants

    Get PDF
    BACKGROUND: Inhalation of TIP peptides that mimic the lectin-like domain of TNF-α is a novel approach to attenuate pulmonary oedema on the threshold to clinical application. A placebo-controlled porcine model of acute respiratory distress syndrome (ARDS) demonstrated a reduced thermodilution-derived extravascular lung water index (EVLWI) and improved gas exchange through TIP peptide inhalation within three hours. Based on these findings, the present study compares a single versus a repetitive inhalation of a TIP peptide (TIP-A) and two alternate peptide versions (TIP-A, TIP-B). METHODS: Following animal care committee approval ARDS was induced by bronchoalveolar lavage followed by injurious ventilation in 21 anaesthetized pigs. A randomised-blinded three-group setting compared the single-dosed peptide variants TIP-A and TIP-B as well as single versus repetitive inhalation of TIP-A (n = 7 per group). Over two three-hour intervals parameters of gas exchange, transpulmonary thermodilution, calculated alveolar fluid clearance, and ventilation/perfusion-distribution were assessed. Post-mortem measurements included pulmonary wet/dry ratio and haemorrhage/congestion scoring. RESULTS: The repetitive TIP-A inhalation led to a significantly lower wet/dry ratio than a single dose and a small but significantly lower EVLWI. However, EVLWI changes over time and the derived alveolar fluid clearance did not differ significantly. The comparison of TIP-A and B showed no relevant differences. Gas exchange and ventilation/perfusion-distribution significantly improved in all groups without intergroup differences. No differences were found in haemorrhage/congestion scoring. CONCLUSIONS: In comparison to a single application the repetitive inhalation of a TIP peptide in three-hour intervals may lead to a small additional reduction the lung water content. Two alternate TIP peptide versions showed interchangeable characteristics

    TIP peptide inhalation in oleic acid-induced experimental lung injury : a post-hoc comparison

    Get PDF
    BACKGROUND: The lectin-like domain of TNF-alpha mimicked by an inhaled TIP peptide represents a novel approach to attenuate a pulmonary edema in respiratory failure, which is on the threshold to clinical application. In extension to a previously published study, which reported an improved pulmonary function following TIP peptide inhalation in a porcine model of lavage-induced lung injury, a post-hoc comparison to additional experiments was conducted. This analysis addresses the hypothesis that oleic acid injection-induced capillary leakage and alveolar necrosis blunts the previously reported beneficial effects of TIP peptide inhalation in a porcine model. FINDINGS: Following animal care committee approval lung injury was induced by oleic acid injection in six pigs with a setting strictly according to a previously published protocol that was used for lung-lavaged pigs. Ventilation/perfusion-distribution by multiple inert gas elimination, parameters of gas exchange and pulmonary edema were assessed as surrogates of the pulmonary function. A significantly improved ventilation/perfusion-distribution following TIP inhalation was recognized only in the bronchoalveolar lavage model but not following oleic acid injection. The time course after oleic acid injection yielded no comparable impact of the TIP peptide on gas exchange and edema formation. CONCLUSIONS: Reported beneficial effects of the TIP peptide on gas exchange and pulmonary edema were not reproducible in the oleic acid injection model. This analysis assumes that sustained alveolar epithelial necrosis as induced by oleic acid injection may inhibit the TIP-induced edema resolution. Regarding the on-going clinical development of the TIP peptide this approach should hardly be effective in states of severe alveolar epithelial damage
    corecore