49 research outputs found

    From science to policy: How European HBM indicators help to answer policy questions related to phthalates and DINCH exposure

    Get PDF
    Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined

    Identification of chemicals of emerging concern in urine of Flemish adolescents using a new suspect screening workflow for LC-QTOF-MS

    No full text
    An essential step in human biomonitoring or molecular epidemiology programs is to estimate human exposure to environmental chemicals. Despite significant progress in the capabilities of analytical methods, the number of pollutants and their metabolites keeps increasing continuously. Some of these relatively unknown chemicals of emerging concern (CECs) may pose significant health risks to humans and biota, but remain virtually undetected in traditional HBM-studies. Non-target and suspect screening techniques based on high-resolution mass spectrometry (HRMS) perform the detection and identification of compounds without any a priori compound selection or chemical information and provide a more holistic overview of human exposure. In this study, 50 urine samples (25 female and 25 male) from a larger cohort of the Flemish Environment and Health Study (FLEHS IV, 2016-2020) have been submitted to suspect screening analysis, with the aim of detecting and identifying new CECs. For this purpose, an analytical method has been developed, optimised and evaluated in terms of analytical performance. Satisfactory results were obtained in terms of reproducibility, sensitivity and quality control. Data-mining was performed through the combination of two different workflows. The use of two complementary workflows enhanced the number of identified compounds. As a result, 45 CECs have been identified with a level of confidence ranged between 3 and 1. Most of the identified compounds were metabolisation products, many of which were currently not included in the targeted measurements of FLEHS IV. The identified chemicals and metabolites could be used as candidate biomarkers of exposure in future studies. Overall, the newly developed suspect screening workflow of this pilot study provided complementary and promising results for future HBM-programs. (C) 2021 Elsevier Ltd. All rights reserved
    corecore