148 research outputs found
A role for Tbx5 in proepicardial cell migration during cardiogenesis
Transcriptional regulatory cascades during epicardial and coronary vascular development from proepicardial progenitor cells remain to be defined. We have used immunohistochemistry of human embryonic tissues to demonstrate that the TBX5 transcription factor is expressed not only in the myocardium, but also throughout the embryonic epicardium and coronary vasculature. TBX5 is not expressed in other human fetal vascular beds. Furthermore, immunohistochemical analyses of human embryonic tissues reveals that unlike their epicardial counterparts, delaminating epicardial-derived cells do not express TBX5 as they migrate through the subepicardium before undergoing epithelial-mesenchymal transformation required for coronary vasculogenesis. In the chick, Tbx5 is expressed in the embryonic proepicardial organ (PEO), which is composed of the epicardial and coronary vascular progenitor cells. Retrovirus-mediated overexpression of human TBX5 inhibits cell incorporation of infected proepicardial cells into the nascent chick epicardium and coronary vasculature. TBX5 overexpression as well as antisense-mediated knockdown of chick Tbx5 produce a cell-autonomous defect in the PEO that prevents proepicardial cell migration. Thus, both increasing and decreasing Tbx5 dosage impairs development of the proepicardium. Culture of explanted PEOs demonstrates that untreated chick proepicardial cells downregulate Tbx5 expression during cell migration. Therefore, we propose that Tbx5 participates in regulation of proepicardial cell migration, a critical event in the establishment of the epicardium and coronary vasculature
Tbx5 is Required for Avian and Mammalian Epicardial Formation and Coronary Vasculogenesis.
Rationale: Holt-Oram syndrome (HOS) is an autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene. Overexpression of Tbx5 in the chick proepicardial organ (PEO) impaired coronary blood vessel formation. However, the potential activity of Tbx5 in the epicardium itself, and Tbx5\u27s role in mammalian coronary vasculogenesis, remains largely unknown. Objective: To evaluate the consequences of altered Tbx5 gene dosage during PEO and epicardial development in the embryonic chick and mouse. Methods and Results: Retroviral-mediated knockdown or upregulation of Tbx5 expression in the embryonic chick PEO as well as proepicardial-specific deletion of Tbx5 in the embryonic mouse (Tbx5(epi-/-)) impaired normal PEO cell development, inhibited epicardial and coronary blood vessel formation and altered developmental gene expression. The generation of epicardial-derived cells (EPDCs) and their migration into the myocardium was impaired between embryonic day (E) 13.5-15.5 in mutant hearts due to delayed epicardial attachment to the myocardium and subepicardial accumulation of EPDCs. This caused defective coronary vasculogenesis associated with impaired vascular smooth muscle cell recruitment, and reduced invasion of cardiac fibroblasts and endothelial cells into myocardium. In contrast to wildtype hearts that exhibited an elaborate ventricular vascular network, Tbx5(epi-/-) hearts displayed a marked decrease in vascular density that was associated with myocardial hypoxia as exemplified by HIF1α upregulation and increased binding of Hypoxyprobe-1. Tbx5(epi-/-) mice with such myocardial hypoxia exhibited reduced exercise capacity compared to wildtype mice. Conclusions: Our findings support a conserved Tbx5 dose-dependent requirement for both proepicardial and epicardial progenitor cell development in chick and mouse coronary vascular formation
Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state
Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre-and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding. © 2013 the American Physiological Society
- …