12 research outputs found

    Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    No full text
    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the highest activity on SF-763 cells. Altogether these results justify the use of these plants in traditional medicine in Burkina Faso and open a new field of investigation in the characterization of the molecules involved in anti-proliferative processes

    Assessment of heterocyclic aromatic amines contents in flamed and braised chicken in Burkina Faso.

    Full text link
    peer reviewedThe nutritional status of meat is tarnished by its association with the induced cooking contaminants. The aim of this study was to assess the heterocyclic aromatic amines profile and contents in processed chicken in Burkina Faso. Eight polar and apolar heterocyclic aromatic amines (HAAs) including 2-mino-3-methylimidazo[4,5-f]quinolone (IQ), 3-amino-1,4-dimethyl-5H-pyrido[4, 3-b]indole (Trp-P1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P2), 2-mino-9H-pyrido-[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4, 5- ]pyridine (PhIP), 2-amino-3-methyl-9H-pyrido[2,3-b] indole (MeAαC), 2-amino-3,4,8-rimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,8-imethylimidazo[4,5-]quinoxaline (MeIQx) were screened by high performance liquid chromatography from 29 samples of flamed chicken and 66 samples of braised chicken collected in Ouagadougou city. Apolar HAAs and polar HAAs were respectively 12 and 3 times more abundant in flamed chickens (32.66±10 and 3.48±10.39 ng/g, respectively) than in braised chickens (2.70±9.67 and 0.92 ng/g, respectively). The maximum levels of AαC were in the same proportions in flamed (12.01 ng/g) and braised chickens (14.13 ng/g). Flamed chicken had the highest Trp-P1 content (530.31 ng/g). The 4,8-DiMeIQx was not detected in braised chicken. The AαCs were more abundant in flamed than in braised chicken. The profile and the contents of the HAAs in processed chicken are related to cooking methods. Because of the high variability observed on the obtained concentrations, investigations on the contents of precursors in raw chicken, the effect of marinating ingredients on the formation of HAAs are needed.Qualisan

    Assessment of heterocyclic aromatic amines contents in flamed and braised chicken in Burkina Faso.

    No full text
    The nutritional status of meat is tarnished by its association with the induced cooking contaminants. The aim of this study was to assess the heterocyclic aromatic amines profile and contents in processed chicken in Burkina Faso. Eight polar and apolar heterocyclic aromatic amines (HAAs) including 2-mino-3-methylimidazo[4,5-f]quinolone (IQ), 3-amino-1,4-dimethyl-5H-pyrido[4, 3-b]indole (Trp-P1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P2), 2-mino-9H-pyrido-[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4, 5- ]pyridine (PhIP), 2-amino-3-methyl-9H-pyrido[2,3-b] indole (MeAαC), 2-amino-3,4,8-rimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,8-imethylimidazo[4,5-]quinoxaline (MeIQx) were screened by high performance liquid chromatography from 29 samples of flamed chicken and 66 samples of braised chicken collected in Ouagadougou city. Apolar HAAs and polar HAAs were respectively 12 and 3 times more abundant in flamed chickens (32.66±10 and 3.48±10.39 ng/g, respectively) than in braised chickens (2.70±9.67 and 0.92 ng/g, respectively). The maximum levels of AαC were in the same proportions in flamed (12.01 ng/g) and braised chickens (14.13 ng/g). Flamed chicken had the highest Trp-P1 content (530.31 ng/g). The 4,8-DiMeIQx was not detected in braised chicken. The AαCs were more abundant in flamed than in braised chicken. The profile and the contents of the HAAs in processed chicken are related to cooking methods. Because of the high variability observed on the obtained concentrations, investigations on the contents of precursors in raw chicken, the effect of marinating ingredients on the formation of HAAs are needed

    Time-dependent anti-proliferative activity of EOs after 24, 48 and 72 hours of exposure.

    No full text
    <p>Cells were incubated at IC<sub>50</sub> of each EO. a, LNCaP cells; b, PC-3 cells; c, SF-767 cells; d, SF-763 cells. *, p<0.05 compared to 24 hrs of treatment; §, p<0.05 compared to 48 hrs of treatment. Experiments were performed 3 times in octuplets.</p

    Inhibition percentage of lipoxygenase by essential oils.

    No full text
    <p>Values are expressed as mean values ± standard deviation (n = 3 experiments); %, percentage;</p><p>*, 8 mg/ml in the reaction medium;</p><p>**, 0.4 mg/ml;</p><p>***, 100 µg/ml in the reaction medium;</p><p>A, B, C, D: means followed by the same letter are not significantly different (p>0.05).</p

    Anti-radical activity of essential oils by DPPH and ABTS methods.

    No full text
    <p>DPPH, (2,2-diphenyl-1-picrylhydrazyl); ABTS (2,2′-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid]); Values are expressed as mean values ± standard deviation (n = 3 experiments in quadruplicate); DPPH activities is expressed as inhibitory percentage at and ABTS activities are given in mmol TE/g (10<sup>−3</sup> mol Throlox equivalent/g of extract); Concentrations of the extracts Throlox of 100 µg/mL for DPPH and 1 mg/mL for ABTS used as standard; A, B, C, D: means followed by the same letter are not significantly different (p>0.05).</p
    corecore