48 research outputs found

    Thermomigration induced degradation in solder alloys

    Get PDF
    Miniaturization of electronics to the nanoscale brings new challenges. Because of their small size and immense information and power processing capacity, large temperature gradients exist across nanoelectronics and power electronics solder joints. In this paper, a fully coupled thermomechanical-diffusion model is introduced to study the thermomigration induced strength degradation. A nonlinear viscoplastic material model with kinematic and isotropic hardening features is utilized. The model takes into account microstructural evolution of the material. A grain coarsening capability is built into the model to study its influence on thermomigration in solder alloys. The model is validated by comparing the simulation results with experimental data

    3D microband boundary alignments and transitions in a cold rolled commercial purity aluminum alloy

    No full text
    In the study of microband formation during plastic deformation of face centered cubic metals and alloys, two theories have been proposed regarding the orientations of their boundaries: (i) they are aligned parallel to crystallographic planes associated with dislocation glide (i.e. {111} planes in FCC metals), or (ii) they are aligned in accordance with the macroscopic stress state generated during deformation. In this study, high resolution 3D electron backscatter diffraction (3D EBSD) was used to investigate the morphology and crystallographic nature of microband boundaries within a 19 × 9 × 8.6 µm volume of a deformed grain in commercial purity aluminum cold rolled to 22% reduction. It was found that microband boundaries correspond to both theories of orientation. Additionally, a single surface may contain both crystallographic and non-crystallographic alignments. Misorientations across boundaries in the regions of microband triple junctions have been identified for both boundary alignments

    MISTIQS: An open-source software for performing quantum dynamics simulations on quantum computers

    No full text
    We present MISTIQS, a Multiplatform Software for Time-dependent Quantum Simulations. MISTIQS delivers end-to-end functionality for simulating the quantum many-body dynamics of systems governed by time-dependent Heisenberg Hamiltonians across multiple quantum computing platforms. It provides high-level programming functionality for generating intermediate representations of quantum circuits which can be translated into a variety of industry-standard representations. Furthermore, it offers a selection of circuit compilation and optimization methods and facilitates execution of the quantum circuits on currently available cloud-based quantum computing backends. MISTIQS serves as an accessible and highly flexible research and education platform, allowing a broader community of scientists and students to perform quantum many-body dynamics simulations on current quantum computers

    Uncovering the true nature of deformation microstructures using 3D analysis methods

    No full text
    © Published under licence by IOP Publishing Ltd.Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper
    corecore