57 research outputs found

    Testing new-physics models with global comparisons to collider measurements: the Contur toolkit

    Get PDF
    Measurements at particle collider experiments, even if primarily aimed at understanding Standard Model processes, can have a high degree of model independence, and implicitly contain information about potential contributions from physics beyond the Standard Model. The Contur package allows users to benefit from the hundreds of measurements preserved in the Rivet library to test new models against the bank of LHC measurements to date. This method has proven to be very effective in several recent publications from the Contur team, but ultimately, for this approach to be successful, the authors believe that the Contur tool needs to be accessible to the wider high energy physics community. As such, this manual accompanies the first user-facing version: Contur v2. It describes the design choices that have been made, as well as detailing pitfalls and common issues to avoid. The authors hope that with the help of this documentation, external groups will be able to run their own Contur studies, for example when proposing a new model, or pitching a new search

    In vitro pharmacology of fentanyl analogs at the human mu opioid receptor and their spectroscopic analysis

    Full text link
    Opioids are widely misused and account for almost half of overdose deaths in the United States. The cost in terms of lives, health care, and lost productivity is significant and has been declared a national crisis. Fentanyl is a highly potent mu opioid receptor (MOR) agonist and plays a significant role in the current opioid epidemic; fentanyl and its analogs (fentalogs) are increasingly becoming one of the biggest dangers in the opioid crisis. The availability of fentalogs in the illicit market is thought to play a significant role in the recent increase in opioid‐related deaths. Although there is both rodent homolog in vivo and in vitro data for some fentalogs, prior to this publication very little was known about the pharmacology of many of these illicit compounds at the human MOR (hMOR). Using gas chromatography–mass spectrometry, nuclear magnetic resonance spectroscopy, and in vitro assays, this study describes the spectral and pharmacological properties of 34 fentalogs. The reported spectra and chemical data will allow for easy identification of novel fentalogs in unknown or mixed samples. Taken together these data are useful for law enforcement and clinical workers as they will aid in the identification of fentalogs in unknown samples and can potentially be used to predict physiological effects after exposure.This study reports the basic in vitro pharmacology (affinity, agonist activity, and potencies) of 34 fentanyl analogs at the human mu opioid receptor. In addition, these fentalogs are analyzed spectroscopically using gas chromatography–mass spectrometry and proton nuclear magnetic resonance spectroscopy, to understand structural commonalities and key differences for identification.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156439/2/dta2822.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156439/1/dta2822_am.pd

    Antioxidant activity of twenty five plants from Colombian biodiversity

    Full text link
    The antioxidant activity of the crude n-hexane, dichloromethane, and methanol extracts from 25 species belonging to the Asteraceae, Euphorbiaceae, Rubiaceae, and Solanaceae families collected at natural reserves from the Eje Cafetero EcorregiĂłn Colombia, were evaluated by using the spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging method. The strongest antioxidant activities were showed by the methanol and dichloromethane extracts from the Euphorbiaceae, Alchornea coelophylla (IC50 41.14 mg/l) and Acalypha platyphilla (IC50 111.99 mg/l), respectively. These two species had stronger DPPH radical scavenging activities than hydroquinone (IC50 151.19 mg/l), the positive control. The potential use of Colombian flora for their antioxidant activities is discussed

    Uncovering the true nature of deformation microstructures using 3D analysis methods

    No full text
    © Published under licence by IOP Publishing Ltd.Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper
    • 

    corecore