1,787 research outputs found

    Canalization in the Critical States of Highly Connected Networks of Competing Boolean Nodes

    Full text link
    Canalization is a classic concept in Developmental Biology that is thought to be an important feature of evolving systems. In a Boolean network it is a form of network robustness in which a subset of the input signals control the behavior of a node regardless of the remaining input. It has been shown that Boolean networks can become canalized if they evolve through a frustrated competition between nodes. This was demonstrated for large networks in which each node had K=3 inputs. Those networks evolve to a critical steady-state at the boarder of two phases of dynamical behavior. Moreover, the evolution of these networks was shown to be associated with the symmetry of the evolutionary dynamics. We extend these results to the more highly connected K>3 cases and show that similar canalized critical steady states emerge with the same associated dynamical symmetry, but only if the evolutionary dynamics is biased toward homogeneous Boolean functions.Comment: 8 pages, 5 figure

    Nonlinear evolution of surface morphology in InAs/AlAs superlattices via surface diffusion

    Full text link
    Continuum simulations of self-organized lateral compositional modulation growth in InAs/AlAs short-period superlattices on InP substrate are presented. Results of the simulations correspond quantitatively to the results of synchrotron x-ray diffraction experiments. The time evolution of the compositional modulation during epitaxial growth can be explained only including a nonlinear dependence of the elastic energy of the growing epitaxial layer on its thickness. From the fit of the experimental data to the growth simulations we have determined the parameters of this nonlinear dependence. It was found that the modulation amplitude don't depend on the values of the surface diffusion constants of particular elements.Comment: 4 pages, 3 figures, published in Phys. Rev. Lett. http://link.aps.org/abstract/PRL/v96/e13610

    Competition in Social Networks: Emergence of a Scale-free Leadership Structure and Collective Efficiency

    Full text link
    Using the minority game as a model for competition dynamics, we investigate the effects of inter-agent communications on the global evolution of the dynamics of a society characterized by competition for limited resources. The agents communicate across a social network with small-world character that forms the static substrate of a second network, the influence network, which is dynamically coupled to the evolution of the game. The influence network is a directed network, defined by the inter-agent communication links on the substrate along which communicated information is acted upon. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a robust leadership structure that is scale-free. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.Comment: 4 pages, 2 postscript figures include

    Optimal transport on wireless networks

    Get PDF
    We present a study of the application of a variant of a recently introduced heuristic algorithm for the optimization of transport routes on complex networks to the problem of finding the optimal routes of communication between nodes on wireless networks. Our algorithm iteratively balances network traffic by minimizing the maximum node betweenness on the network. The variant we consider specifically accounts for the broadcast restrictions imposed by wireless communication by using a different betweenness measure. We compare the performance of our algorithm to two other known algorithms and find that our algorithm achieves the highest transport capacity both for minimum node degree geometric networks, which are directed geometric networks that model wireless communication networks, and for configuration model networks that are uncorrelated scale-free networks.Comment: 5 pages, 4 figure

    Mean-Field Analysis and Monte Carlo Study of an Interacting Two-Species Catalytic Surface Reaction Model

    Get PDF
    We study the phase diagram and critical behavior of an interacting one dimensional two species monomer-monomer catalytic surface reaction model with a reactive phase as well as two equivalent adsorbing phase where one of the species saturates the system. A mean field analysis including correlations up to triplets of sites fails to reproduce the phase diagram found by Monte Carlo simulations. The three phases coexist at a bicritical point whose critical behavior is described by the even branching annihilating random walk universality class. This work confirms the hypothesis that the conservation modulo 2 of the domain walls under the dynamics at the bicritical point is the essential feature in producing critical behavior different from directed percolation. The interfacial fluctuations show the same universal behavior seen at the bicritical point in a three-species model, supporting the conjecture that these fluctuations are a new universal characteristic of the model.Comment: 11 pages using RevTeX, plus 4 Postscript figures. Uses psfig.st

    An Upsilon Point in a Spin Model

    Full text link
    We present analytic evidence for the occurrence of an upsilon point, an infinite checkerboard structure of modulated phases, in the ground state of a spin model. The structure of the upsilon point is studied by calculating interface--interface interactions using an expansion in inverse spin anisotropy.Comment: 18 pages ReVTeX file, including 6 figures encoded with uufile

    Interacting Monomer-Dimer Model with Infinitely Many Absorbing States

    Full text link
    We study a modified version of the interacting monomer-dimer (IMD) model that has infinitely many absorbing (IMA) states. Unlike all other previously studied models with IMA states, the absorbing states can be divided into two equivalent groups which are dynamically separated infinitely far apart. Monte Carlo simulations show that this model belongs to the directed Ising universality class like the ordinary IMD model with two equivalent absorbing states. This model is the first model with IMA states which does not belong to the directed percolation (DP) universality class. The DP universality class can be restored in two ways, i.e., by connecting the two equivalent groups dynamically or by introducing a symmetry-breaking field between the two groups.Comment: 5 pages, 5 figure

    Nature of phase transitions in a probabilistic cellular automaton with two absorbing states

    Get PDF
    We present a probabilistic cellular automaton with two absorbing states, which can be considered a natural extension of the Domany-Kinzel model. Despite its simplicity, it shows a very rich phase diagram, with two second-order and one first-order transition lines that meet at a tricritical point. We study the phase transitions and the critical behavior of the model using mean field approximations, direct numerical simulations and field theory. A closed form for the dynamics of the kinks between the two absorbing phases near the tricritical point is obtained, providing an exact correspondence between the presence of conserved quantities and the symmetry of absorbing states. The second-order critical curves and the kink critical dynamics are found to be in the directed percolation and parity conservation universality classes, respectively. The first order phase transition is put in evidence by examining the hysteresis cycle. We also study the "chaotic" phase, in which two replicas evolving with the same noise diverge, using mean field and numerical techniques. Finally, we show how the shape of the potential of the field-theoretic formulation of the problem can be obtained by direct numerical simulations.Comment: 19 pages with 7 figure

    Directed avalanche processes with underlying interface dynamics

    Full text link
    We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall. The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-Parisi-Zhang (KPZ) universality class. We formulate relations between the critical exponents of the various avalanche distributions and those of the roughness of the growing interface. The nonlinear nature of the underlying KPZ dynamics provides a nontrivial test of such generic exponent relations. The numerical values of the avalanche exponents are close to the conventional KPZ values, but differ sufficiently to warrant a detailed study of whether avalanche correlated Monte Carlo sampling changes the scaling exponents of KPZ interfaces. We demonstrate that the exponents remain unchanged, but that the traces left on the surface by previous avalanches give rise to unusually strong finite-size corrections to scaling. This type of slow convergence seems intrinsic to avalanche dynamics.Comment: 13 pages, 13 figure

    Lifting of Multiphase Degeneracy by Quantum Fluctuations

    Get PDF
    We study the effect of quantum fluctuations on the multiphase point of the Heisenberg model with first- and second-neighbor competing interactions and strong uniaxial spin anisotropy DD. By studying the structure of perturbation theory we show that the multiphase degeneracy which exists for S=S=\infty (i.e., for the ANNNI model) is lifted and that the effect of quantum fluctuations is to stabilize a sequence of phases of wavelength 4,6,8,...~. This sequence is probably an infinite one. We also show that quantum fluctuations can mediate an infinite sequence of layering transitions through which an interface can unbind from a wall.Comment: 55 pages ReVTeX (encoded with uufiles) + 17 uuencoded figure
    corecore