12 research outputs found
Recommended from our members
Prospective, Same-Day, Direct Comparison of Controlled Attenuation Parameter With the M vs the XL Probe in Patients With Nonalcoholic Fatty Liver Disease, Using Magnetic Resonance Imaging-Proton Density Fat Fraction as the Standard.
BACKGROUND & AIMS: Controlled attenuation parameter (CAP) measurements using M probe have been reported to be lower than those of the XL-probe in detection of hepatic steatosis. However, there has been no direct comparison of CAP with the M vs the XL probe in patients with nonalcoholic fatty liver disease (NAFLD). We compared CAP with the M vs the XL probe for quantification of hepatic fat content, using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as the standard. METHODS: We performed a prospective study of 100 adults (mean body mass index [BMI], 30.6 ± 4.7 kg/m2) with and without NAFLD, assessed by CAP with the M probe and XL probe on the same day, at a single research center, from November 2017 through November 2018. We then measured the MRI-PDFF as the reference standard. Outcomes were presence of hepatic steatosis, defined as MRI-PDFF â„ 5%, and detection of hepatic fat content â„ 10%, defined as MRI-PDFF â„ 10%. We performed area under the receiver operating characteristic curve (AUROC) analyses to assess the diagnostic accuracy of CAP for each probe in detection of hepatic steatosis (MRI-PDFF â„ 5%) and of hepatic fat content â„ 10%. RESULTS: Of the study participants, 68% had an MRI-PDFF of 5% or more and 48% had an MRI-PDFF of 10% or more. The mean CAP measured by the M probe (310 ± 62 db/m) was significantly lower than by the X probe (317 ± 63 db/m) (P = .007). When M probe was used in participants with BMIs <30 kg/m2 and XL probe in participants with BMIs â„30 kg/m2, the CAP measured by the M probe (312 ± 51.4 db/m) remained significantly lower than that of the XL probe (345 ± 47.6 db/m) (P = .0035.), when the MRI-PDFF was above 5%. The optimal threshold of CAP for the detection of MRI-PDFFâ„5%, was 294 db/m with the M probe and 307 db/m with the XL probe. The optimal threshold of CAP for the detection of MRI-PDFF â„ 10%, was 311 db/m with the M probe and 322 db/m with the XL probe. For only the XL probe, CAP measurements with an interquartile range below 30 dB/m detected an MRI-PDFFâ„5% with a lower AUROC (0.97; 95% CI, 0.80-1.00) than CAP measurements with an interquartile range above 30 dB/m (AUROC, 0.82; 95% CI, 0.71-0.90) (P = .0129). CONCLUSIONS: In an analysis of the same patients using CAP with the M probe and XL probe, with MRI-PDFF as the standard, we found that the M probe under-quantifies CAP values compared with the XL probe, independent of BMI. The type of probe should be considered when interpreting CAP data from patients with NAFLD
Prospective, Same-Day, Direct Comparison of Controlled Attenuation Parameter With the M vs the XL Probe in Patients With Nonalcoholic Fatty Liver Disease, Using Magnetic Resonance Imaging-Proton Density Fat Fraction as the Standard.
Background & aimsControlled attenuation parameter (CAP) measurements using M probe have been reported to be lower than those of the XL-probe in detection of hepatic steatosis. However, there has been no direct comparison of CAP with the M vs the XL probe in patients with nonalcoholic fatty liver disease (NAFLD). We compared CAP with the M vs the XL probe for quantification of hepatic fat content, using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as the standard.MethodsWe performed a prospective study of 100 adults (mean body mass index [BMI], 30.6 ± 4.7 kg/m2) with and without NAFLD, assessed by CAP with the M probe and XL probe on the same day, at a single research center, from November 2017 through November 2018. We then measured the MRI-PDFF as the reference standard. Outcomes were presence of hepatic steatosis, defined as MRI-PDFF â„ 5%, and detection of hepatic fat content â„ 10%, defined as MRI-PDFF â„ 10%. We performed area under the receiver operating characteristic curve (AUROC) analyses to assess the diagnostic accuracy of CAP for each probe in detection of hepatic steatosis (MRI-PDFF â„ 5%) and of hepatic fat content â„ 10%.ResultsOf the study participants, 68% had an MRI-PDFF of 5% or more and 48% had an MRI-PDFF of 10% or more. The mean CAP measured by the M probe (310 ± 62 db/m) was significantly lower than by the X probe (317 ± 63 db/m) (P = .007). When M probe was used in participants with BMIs <30 kg/m2 and XL probe in participants with BMIs â„30 kg/m2, the CAP measured by the M probe (312 ± 51.4 db/m) remained significantly lower than that of the XL probe (345 ± 47.6 db/m) (P = .0035.), when the MRI-PDFF was above 5%. The optimal threshold of CAP for the detection of MRI-PDFFâ„5%, was 294 db/m with the M probe and 307 db/m with the XL probe. The optimal threshold of CAP for the detection of MRI-PDFF â„ 10%, was 311 db/m with the M probe and 322 db/m with the XL probe. For only the XL probe, CAP measurements with an interquartile range below 30 dB/m detected an MRI-PDFFâ„5% with a lower AUROC (0.97; 95% CI, 0.80-1.00) than CAP measurements with an interquartile range above 30 dB/m (AUROC, 0.82; 95% CI, 0.71-0.90) (P = .0129).ConclusionsIn an analysis of the same patients using CAP with the M probe and XL probe, with MRI-PDFF as the standard, we found that the M probe under-quantifies CAP values compared with the XL probe, independent of BMI. The type of probe should be considered when interpreting CAP data from patients with NAFLD
Optimal Threshold of Controlled Attenuation Parameter for Detection of HIV-Associated NAFLD With Magnetic Resonance Imaging as the Reference Standard.
BackgroundControlled attenuation parameter (CAP) is an ultrasound-based point-of-care method to quantify liver fat; however, the optimal threshold for CAP to detect pathologic liver fat among persons living with human immunodeficiency virus (HIV; PLWH) is unknown. Therefore, we aimed to identify the diagnostic accuracy and optimal threshold of CAP for the detection of liver-fat among PLWH with magnetic resonance imaging proton-density fat fraction (MRI-PDFF) as the reference standard.MethodsPatients from a prospective single-center cohort of PLWH at risk for HIV-associated nonalcoholic fatty liver disease (NAFLD) who underwent contemporaneous MRI-PDFF and CAP assessment were included. Subjects with other forms of liver disease including viral hepatitis and excessive alcohol intake were excluded. Receiver operatic characteristic (ROC) curve analysis were performed to identify the optimal threshold for the detection of HIV-associated NAFLD (liver fat ℠5%).ResultsSeventy PLWH (90% men) at risk for NAFLD were included. The mean (± standard deviation) age and body mass index were 48.6 (±10.2) years and 30 (± 5.3) kg/m2, respectively. The prevalence of HIV-associated NAFLD (MRI-PDFF ℠5%) was 80%. The M and XL probes were used for 56% and 44% of patients, respectively. The area under the ROC curve of CAP for the detection of MRI-PDFF ℠5% was 0.82 (0.69-0.95) at the cut-point of 285 dB/m. The positive predictive value of CAP ℠285 dB/m was 93.2% in this cohort with sensitivity of 73% and specificity of 78.6%.ConclusionsThe optimal cut-point of CAP to correctly identify HIV-associated NAFLD was 285 dB/m, is similar to previously published cut-point for primary NAFLD and may be incorporated into routine care to identify patients at risk of HIV-associated NAFLD
Recommended from our members
A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease.
The presence of cirrhosis in nonalcoholic-fatty-liver-disease (NAFLD) is the most important predictor of liver-related mortality. Limited data exist concerning the diagnostic accuracy of gut-microbiome-derived signatures for detecting NAFLD-cirrhosis. Here we report 16S gut-microbiome compositions of 203 uniquely well-characterized participants from a prospective twin and family cohort, including 98 probands encompassing the entire spectrum of NAFLD and 105 of their first-degree relatives, assessed by advanced magnetic-resonance-imaging. We show strong familial correlation of gut-microbiome profiles, driven by shared housing. We report a panel of 30 features, including 27 bacterial features with discriminatory ability to detect NAFLD-cirrhosis using a Random Forest classifier model. In a derivation cohort of probands, the model has a robust diagnostic accuracy (AUROC of 0.92) for detecting NAFLD-cirrhosis, confirmed in a validation cohort of relatives of proband with NAFLD-cirrhosis (AUROC of 0.87). This study provides evidence for a fecal-microbiome-derived signature to detect NAFLD-cirrhosis
A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease
Development of cirrhosis in individuals with non-alcoholic fatty liver disease can predict mortality. Here the authors used a unique twin and family cohort to identify a gut microbiome-derived 16sRNA signature that can detect cirrhosis in individuals with non-alcoholic fatty liver disease
Recommended from our members
Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD.
Previous studies have shown that gut-microbiome is associated with nonalcoholic fatty liver disease (NAFLD). We aimed to examine if serum metabolites, especially those derived from the gut-microbiome, have a shared gene-effect with hepatic steatosis and fibrosis. This is a cross-sectional analysis of a prospective discovery cohort including 156 well-characterized twins and families with untargeted metabolome profiling assessment. Hepatic steatosis was assessed using magnetic-resonance-imaging proton-density-fat-fraction (MRI-PDFF) and fibrosis using MR-elastography (MRE). A twin additive genetics and unique environment effects (AE) model was used to estimate the shared gene-effect between metabolites and hepatic steatosis and fibrosis. The findings were validated in an independent prospective validation cohort of 156 participants with biopsy-proven NAFLD including shotgun metagenomics sequencing assessment in a subgroup of the cohort. In the discovery cohort, 56 metabolites including 6 microbial metabolites had a significant shared gene-effect with both hepatic steatosis and fibrosis after adjustment for age, sex and ethnicity. In the validation cohort, 6 metabolites were associated with advanced fibrosis. Among them, only one microbial metabolite, 3-(4-hydroxyphenyl)lactate, remained consistent and statistically significantly associated with liver fibrosis in the discovery and validation cohort (fold-change of higher-MRE versus lower-MRE: 1.78, P < 0.001 and of advanced versus no advanced fibrosis: 1.26, P = 0.037, respectively). The share genetic determination of 3-(4-hydroxyphenyl)lactate with hepatic steatosis was RG :0.57,95%CI:0.27-0.80, P < 0.001 and with fibrosis was RG :0.54,95%CI:0.036-1, P = 0.036. Pathway reconstruction linked 3-(4-hydroxyphenyl)lactate to several human gut-microbiome species. In the validation cohort, 3-(4-hydroxyphenyl)lactate was significantly correlated with the abundance of several gut-microbiome species, belonging only to Firmicutes, Bacteroidetes and Proteobacteria phyla, previously reported as associated with advanced fibrosis. Conclusion: This proof of concept study provides evidence of a link between the gut-microbiome and 3-(4-hydroxyphenyl)lactate that shares gene-effect with hepatic steatosis and fibrosis. (Hepatology 2018)
Recommended from our members
MRI Assessment of Treatment Response in HIV-associated NAFLD: A Randomized Trial of a Stearoyl-Coenzyme-A-Desaturase-1 Inhibitor (ARRIVE Trial).
Aramchol, an oral stearoyl-coenzyme-A-desaturase-1 inhibitor, has been shown to reduce hepatic fat content in patients with primary nonalcoholic fatty liver disease (NAFLD); however, its effect in patients with human immunodeficiency virus (HIV)-associated NAFLD is unknown. The aramchol for HIV-associated NAFLD and lipodystrophy (ARRIVE) trial was a double-blind, randomized, investigator-initiated, placebo-controlled trial to test the efficacy of 12 weeks of treatment with aramchol versus placebo in HIV-associated NAFLD. Fifty patients with HIV-associated NAFLD, defined by magnetic resonance imaging (MRI)-proton density fat fraction (PDFF) â„5%, were randomized to receive either aramchol 600 mg daily (n = 25) or placebo (n = 25) for 12 weeks. The primary endpoint was a change in hepatic fat as measured by MRI-PDFF in colocalized regions of interest. Secondary endpoints included changes in liver stiffness using magnetic resonance elastography (MRE) and vibration-controlled transient elastography (VCTE), and exploratory endpoints included changes in total-body fat and muscle depots on dual-energy X-ray absorptiometry (DXA), whole-body MRI, and cardiac MRI. The mean (± standard deviation) of age and body mass index were 48.2 ± 10.3 years and 30.7 ± 4.6 kg/m2 , respectively. There was no difference in the reduction in mean MRI-PDFF between the aramchol group at -1.3% (baseline MRI-PDFF 15.6% versus end-of-treatment MRI-PDFF 14.4%, P = 0.24) and the placebo group at -1.4% (baseline MRI-PDFF 13.3% versus end-of-treatment MRI-PDFF 11.9%, P = 0.26). There was no difference in the relative decline in mean MRI-PDFF between the aramchol and placebo groups (6.8% versus 1.1%, P = 0.68). There were no differences in MRE-derived and VCTE-derived liver stiffness and whole-body (fat and muscle) composition analysis by MRI or DXA. Compared to baseline, end-of-treatment aminotransferases were lower in the aramchol group but not in the placebo arm. There were no significant adverse events. Conclusion: Aramchol, over a 12-week period, did not reduce hepatic fat or change body fat and muscle composition by using MRI-based assessment in patients with HIV-associated NAFLD (clinicaltrials.gov ID:NCT02684591)
MRI Assessment of Treatment Response in HIVâassociated NAFLD: A Randomized Trial of a StearoylâCoenzymeâAâDesaturaseâ1 Inhibitor (ARRIVE Trial)
Aramchol, an oral stearoyl-coenzyme-A-desaturase-1 inhibitor, has been shown to reduce hepatic fat content in patients with primary nonalcoholic fatty liver disease (NAFLD); however, its effect in patients with human immunodeficiency virus (HIV)-associated NAFLD is unknown. The aramchol for HIV-associated NAFLD and lipodystrophy (ARRIVE) trial was a double-blind, randomized, investigator-initiated, placebo-controlled trial to test the efficacy of 12 weeks of treatment with aramchol versus placebo in HIV-associated NAFLD. Fifty patients with HIV-associated NAFLD, defined by magnetic resonance imaging (MRI)-proton density fat fraction (PDFF) â„5%, were randomized to receive either aramchol 600 mg daily (n = 25) or placebo (n = 25) for 12 weeks. The primary endpoint was a change in hepatic fat as measured by MRI-PDFF in colocalized regions of interest. Secondary endpoints included changes in liver stiffness using magnetic resonance elastography (MRE) and vibration-controlled transient elastography (VCTE), and exploratory endpoints included changes in total-body fat and muscle depots on dual-energy X-ray absorptiometry (DXA), whole-body MRI, and cardiac MRI. The mean (± standard deviation) of age and body mass index were 48.2 ± 10.3 years and 30.7 ± 4.6 kg/m2 , respectively. There was no difference in the reduction in mean MRI-PDFF between the aramchol group at -1.3% (baseline MRI-PDFF 15.6% versus end-of-treatment MRI-PDFF 14.4%, P = 0.24) and the placebo group at -1.4% (baseline MRI-PDFF 13.3% versus end-of-treatment MRI-PDFF 11.9%, P = 0.26). There was no difference in the relative decline in mean MRI-PDFF between the aramchol and placebo groups (6.8% versus 1.1%, P = 0.68). There were no differences in MRE-derived and VCTE-derived liver stiffness and whole-body (fat and muscle) composition analysis by MRI or DXA. Compared to baseline, end-of-treatment aminotransferases were lower in the aramchol group but not in the placebo arm. There were no significant adverse events. Conclusion: Aramchol, over a 12-week period, did not reduce hepatic fat or change body fat and muscle composition by using MRI-based assessment in patients with HIV-associated NAFLD (clinicaltrials.gov ID:NCT02684591)
Recommended from our members
Collagen Formation Assessed by N-Terminal Propeptide of Type 3 Procollagen Is a Heritable Trait and Is Associated With Liver Fibrosis Assessed by Magnetic Resonance Elastography.
N-terminal propeptide of type 3 procollagen (PRO-C3) is a biomarker of liver fibrosis in nonalcoholic fatty liver disease (NAFLD). This study examines the association between PRO-C3 concentration and liver fibrosis assessed by magnetic resonance elastography (MRE)-measured stiffness (MRE-stiffness) and the heritability of PRO-C3 concentration in a cohort of twins and families with and without NAFLD. We performed a cross-sectional analysis of a well-characterized prospective cohort of 306 participants, including 44 probands with NAFLD-cirrhosis and their 72 first-degree relatives, 24 probands with NAFLD without advanced fibrosis and their 24 first-degree relatives, and 72 controls without NAFLD and their 72 first-degree relatives. Liver steatosis was assessed by magnetic resonance imaging proton density fat fraction, and liver fibrosis was assessed by MRE-stiffness. Serum PRO-C3 was assessed by competitive, enzyme-linked immunosorbent assay. We assessed the familial correlation of PRO-C3 concentration, the shared gene effects between PRO-C3 concentration and liver steatosis and fibrosis, and the association between PRO-C3 concentration and genetic variants in the patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing (MBOAT), and glucokinase regulator (CGKR) genes. In multivariable-adjusted models including age, sex, body mass index, and ethnicity, serum PRO-C3 correlated strongly with liver fibrosis (r2 = 0.50, P < 0.001) and demonstrated robust heritability (h2 , 0.36; 95% confidence interval [CI], 0.07, 0.59; P = 0.016). PRO-C3 concentration and steatosis had a strong genetic correlation (shared genetic determination: 0.62; 95% CI, 0.236, 1.001; P = 0.002), whereas PRO-C3 concentration and fibrosis had a strong environmental correlation (shared environmental determination: 0.55; 95% CI, 0.317, 0.717; P < 0.001). PRO-C3 concentrations were higher in carriers of the TM6SF2 rs58542926-T allele compared with noncarriers: 15.7 (± 10.5) versus 10.8 (± 5.7) ng/L (P = 0.047). Conclusion: Serum PRO-C3 correlates with MRE-assessed fibrosis, is heritable, shares genetic correlation with liver steatosis and shares environmental correlation with liver fibrosis. PRO-C3 concentration appears to be linked to both fibrosis and steatosis and increased in carriers of the TM6SF2 rs58542926 risk allele