12 research outputs found

    Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger.

    Get PDF
    International audienceGlobally, pneumonia is the leading cause of morbidity and mortality in children, with the highest burden experienced in sub-Saharan Africa and Asia. However, there is a dearth of information on the etiology of severe acute respiratory illness (SARI) in Africa, including Niger. We implemented a retrospective study as part of national influenza sentinel surveillance in Niger. We randomly selected a sample of nasopharyngeal specimens collected from children <5 years of age hospitalized with SARI from January 2010 through December 2012 in Niger. The samples were selected from individuals that tested negative by real-time reverse transcription polymerase chain reaction (rRT-PCR) for influenza A and B virus. The samples were analyzed using the Fast Track Diagnostic Respiratory Pathogens 21plus Kit (BioMérieux, Luxemburg), which detects 23 respiratory pathogens including 18 viral and 5 bacterial agents. Among the 160 samples tested, 138 (86%) tested positive for at least one viral or bacterial pathogen; in 22 (16%) sample, only one pathogen was detected. We detected at least one respiratory virus in 126 (78%) samples and at least one bacterium in 102 (64%) samples. Respiratory syncytial virus (56/160; 35%), rhinovirus (47/160; 29%) and parainfluenza virus (39/160; 24%) were the most common viral pathogens detected. Among bacterial pathogens, Streptococcus pneumoniae (90/160; 56%) and Haemophilus influenzae type b (20/160; 12%) predominated. The high prevalence of certain viral and bacterial pathogens among children <5 years of age with SARI highlights the need for continued and expanded surveillance in Niger

    Influenza Sentinel Surveillance among Patients with Influenza-Like-Illness and Severe Acute Respiratory Illness within the Framework of the National Reference Laboratory, Niger, 2009-2013.

    No full text
    Little is known about the epidemiology of influenza in Africa, including Niger. We documented the epidemiology of seasonal and pandemic influenza among outpatients with influenza-like-illness (ILI) and inpatients with severe acute respiratory illness (SARI) presenting at selected sentinel sites in Niger from April 2009 through April 2013.Patients meeting the ILI or the SARI case definitions and presenting at the outpatient or inpatient departments of selected sentinel sites were enrolled. Epidemiological data and nasopharyngeal swabs were collected. The respiratory samples were tested by real-time reverse transcription polymerase chain reaction.From April 2009 to April 2013, laboratory results were obtained from 1176 ILI and 952 SARI cases, of which 146 (12%) and 54 (6%) tested positive for influenza virus, respectively. The influenza positivity rate was highest in the 5-14 year age-group (32/130; 24% among ILI patients and 6/61; 10% among SARI patients) followed by the 1-4 year age-group (69/438; 16% among ILI patients and 32/333; 9% among SARI patients). Of the 200 influenza positive cases 104 (52%) were A(H1N1)pdm09, 62 (31%) were A(H3N2) and 34 (17%) were B. Influenza viruses were detected predominantly from November to April with peak viral activity observed in February.The Niger sentinel surveillance system allowed to monitor the circulation of seasonal influenza as well as the introduction and spread of influenza A(H1N1)pdm09 in the country. Continuous influenza surveillance is needed to better understand the epidemiology of seasonal influenza and monitor the emergence of influenza strains with pandemic potential

    Evaluation of response strategies against epidemics due to Neisseria meningitidis C in Niger

    No full text
    International audienceOBJECTIVE: To inform public health recommendations, we evaluated the effectiveness and efficiency of current and hypothetical surveillance and vaccine response strategies against Neisseria meningitidis C meningitis epidemics in 2015 in Niger.METHODS : We analysed reports of suspected and confirmed cases of meningitis from the region of Dosso during 2014 and 2015. Based on a definition of epidemic signals, the effectiveness and efficiency of surveillance and vaccine response strategies were evaluated by calculating the number of potentially vaccine-preventable cases and number of vaccine doses needed per epidemic signal.RESULTS : A total of 4763 weekly health area reports, collected in 90 health areas with 1282 suspected meningitis cases, were included. At a threshold of 10 per 100 000, the total number of estimated vaccine-preventable cases was 29 with district-level surveillance and vaccine response, 141 with health area-level surveillance and vaccination and 339 with health area-level surveillance and district-level vaccination. While being most effective, the latter strategy required the largest number of vaccine doses (1.8 million), similar to the strategy of surveillance and vaccination at district level (1.3 million), whereas the strategy of surveillance and vaccination at health area level would have required only 0.8 million doses. Thus, efficiency was lowest for district-level surveillance and highest for health area-level surveillance with district-level vaccination.CONCLUSION : In this analysis, we found that effectiveness and efficiency were higher at health area-level surveillance and district-level vaccination than for other strategies. Use of N. meningitidis C vaccines in a preventive strategy thus should be considered, in particular as most reactive vaccine response strategies in our analysis had little impact on disease burden

    Characteristics of influenza-like illness (ILI) and severe acute respiratory illness (SARI) cases, Niger, 2009–2013.

    No full text
    <p>The p—value is for the comparison of the characteristics of patients with ILI and patients with SARI</p><p>Characteristics of influenza-like illness (ILI) and severe acute respiratory illness (SARI) cases, Niger, 2009–2013.</p

    Number (and percent) of samples tested positive for influenza virus among influenza-like illness (ILI) and severe acute respiratory illness (SARI) cases, Niger, 2009–2013.

    No full text
    <p><b>٭</b> Comparison of the influenza detection rate among patients with ILI and patients with SARI</p><p>The p—value is for the comparison of the influenza detection rate among patients with ILI and patients with SARI</p><p>Number (and percent) of samples tested positive for influenza virus among influenza-like illness (ILI) and severe acute respiratory illness (SARI) cases, Niger, 2009–2013.</p

    Regional sequencing collaboration reveals persistence of the T12 Vibrio cholerae O1 lineage in West Africa

    Get PDF
    Background: Despite recent insights into cholera transmission patterns in Africa, regional and local dynamics in West Africa—where cholera outbreaks occur every few years—are still poorly understood. Coordinated genomic surveillance of Vibrio cholerae in the areas most affected may reveal transmission patterns important for cholera control. Methods: During a regional sequencing workshop in Nigeria, we sequenced 46 recent V. cholerae isolates from Cameroon, Niger, and Nigeria (37 from 2018 to 2019) to better understand the relationship between the V. cholerae bacterium circulating in these three countries. Results: From these isolates, we generated 44 whole Vibrio cholerae O1 sequences and analyzed them in the context of 1280 published V. cholerae O1 genomes. All sequences belonged to the T12 V. cholerae seventh pandemic lineage. Conclusions: Phylogenetic analysis of newly generated and previously published V. cholerae genomes suggested that the T12 lineage has been continuously transmitted within West Africa since it was first observed in the region in 2009, despite lack of reported cholera in the intervening years. The results from this regional sequencing effort provide a model for future regionally coordinated surveillance efforts. Funding: Funding for this project was provided by Bill and Melinda Gates Foundation OPP1195157

    First occurrence of Rift Valley fever outbreak in Niger, 2016

    No full text
    Abstract Rift Valley fever (RVF) is a mosquito‐borne viral zoonosis causing abortions and high mortality among animals, whereas in humans, the disease is usually mild or asymptomatic. In September 2016, the Republic of Niger declared the first RVF outbreak in the northern region of Tahoua near the Malian border. This study describes the outbreak and reports the results of serological and molecular investigations of the human and animal samples collected. Serum samples from both human and animal suspected cases have been confirmed at the Centre de Recherche Médicale et Sanitaire (CERMES) and the Laboratoire Centrale d'Elevage (LABOCEL) public health and animal reference laboratories, respectively. Techniques for biological confirmation were real time reverse transcription polymerase chain reaction (RT‐PCR) and enzyme linked immunosorbent assay (ELISA). Phylogenetic trees were established after genetic sequencing of the small and medium segments of the RVF virus (RVFV) genome. Out of the 399 human samples collected, 17 (4.3%) were confirmed positive for RVFV. Overall, 33 (8.3%) deaths occurred out of which five (29%) were among the 17 confirmed cases. Regarding animals, 45 samples were tested, three of which were RT‐PCR positive and 24 were IgG positive. The phylogenetic analyses showed that the Niger strains clustered with Senegal 2013 and Mauritania 2015 RVFV strains. This first outbreak of RVF was very challenging for public and animal health laboratories in Niger. Besides resulting in human deaths, important loss of cattle has been reported. Therefore, vigilance has to be strengthened emphasising vector control strategies and active surveillance among animals
    corecore