71 research outputs found
Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory
The augmented Lagrangiam method (ALM), widely used in quantum chemistry
constrained optimization problems, is applied in the context of the nuclear
Density Functional Theory (DFT) in the self-consistent constrained Skyrme
Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of
multidimensional energy surfaces in the space of collective coordinates that
are needed to, e.g., determine fission pathways and saddle points; it improves
accuracy of computed derivatives with respect to collective variables that are
used to determine collective inertia; and is well adapted to supercomputer
applications.Comment: 6 pages, 3 figures; to appear in Eur. Phys. J.
Beyond mean-field description of the low-lying spectrum of 16O
Starting from constrained Skyrme-mean-field calculations, the low-energy
excitation spectrum of 16O is calculated by configuration mixing of
particle-number and angular-momentum projected mean-field states in the
framework of the Generator Coordinate Method. Without any adjustable
parameters, this approach gives a very good description of those states and
their transition moments that can be described with our restriction to axially
and reflection-symmetric shapes. The structure of low-lying 0+ states is
analyzed in terms of self-consistent 0p-0h, 2p-2h, and 4p-4h Hartree-Fock
states.Comment: 15 pages LATEX, 6 figures, 3 tables, revision of sections 4 and
Weakly-Interacting Bosons in a Trap within Approximate Second Quantization Approach
The theory of Bogoliubov is generalized for the case of a weakly-interacting
Bose-gas in harmonic trap. A set of nonlinear matrix equations is obtained to
make the diagonalization of Hamiltonian possible. Its perturbative solution is
used for the calculation of the energy and the condensate fraction of the model
system to show the applicability of the method.Comment: 6 pages, two figures .Presented at the International Symposium on
Quantum Fluids and Solids QFS2006 (Kyoto, Japan
Phase separation of Bose-Einstein condensates
The zero-temperature system of two dilute overlapping Bose-Einstein
condensates is unstable against long wavelength excitations if the interaction
strength between the distinguishable bosons exceeds the geometric mean of the
like-boson interaction strengths. If the condensates attract each other, the
instability is similar to the instability of the negative scattering length
condensates. If the condensates repel, they separate spatially into condensates
of equal pressure. We estimate the boundary size, surface tension and energy of
the phase separated condensate system and we discuss the implications for
double condensates in atomic traps.Comment: 11 pages, 1 figur
Totally Microscopic Description of N-O-16 Elastic-Scattering
Journals published by the American Physical Society can be found at http://publish.aps.org
Nuclear Transparency to Intermediate-Energy Protons
Nuclear transparency in the (e,e'p) reaction for 135 < Tp < 800 MeV is
investigated using the distorted wave approximation. Calculations using
density-dependent effective interactions are compared with phenomenological
optical potentials. Nuclear transparency is well correlated with proton
absorption and neutron total cross sections. For Tp < 300 MeV there is
considerable sensitivity to the choice of optical model, with the empirical
effective interaction providing the best agreement with transparency data. For
Tp > 300 MeV there is much less difference between optical models, but the
calculations substantially underpredict transparency data and the discrepancy
increases with A. The differences between Glauber and optical model
calculations are related to their respective definitions of the semi-inclusive
cross section. By using a more inclusive summation over final states the
Glauber model emphasizes nucleon-nucleon inelasticity, whereas with a more
restrictive summation the optical model emphasizes nucleon-nucleus
inelasticity; experimental definitions of the semi-inclusive cross section lie
between these extremes.Comment: uuencoded gz-compressed tar file containing revtex and bbl files and
5 postscript figures, totalling 31 pages. Uses psfi
Eft for DFT
These lectures give an overview of the ongoing application of effective field
theory (EFT) and renormalization group (RG) concepts and methods to density
functional theory (DFT), with special emphasis on the nuclear many-body
problem.Comment: 57 pages, to appear in the proceedings of the ECT* school on
"Renormalization Group and Effective Field Theory Approaches to Many-Body
Systems", Springer Lecture Notes in Physics; acknowledgment adde
Rhinitis in the geriatric population
The current geriatric population in the United States accounts for approximately 12% of the total population and is projected to reach nearly 20% (71.5 million people) by 2030[1]. With this expansion of the number of older adults, physicians will face the common complaint of rhinitis with increasing frequency. Nasal symptoms pose a significant burden on the health of older people and require attention to improve quality of life. Several mechanisms likely underlie the pathogenesis of rhinitis in these patients, including inflammatory conditions and the influence of aging on nasal physiology, with the potential for interaction between the two. Various treatments have been proposed to manage this condition; however, more work is needed to enhance our understanding of the pathophysiology of the various forms of geriatric rhinitis and to develop more effective therapies for this important patient population
- …