10,693 research outputs found

    The quantum theory of measurement within dynamical reduction models

    Get PDF
    We analyze in mathematical detail, within the framework of the QMUPL model of spontaneous wave function collapse, the von Neumann measurement scheme for the measurement of a 1/2 spin particle. We prove that, according to the equation of the model: i) throughout the whole measurement process, the pointer of the measuring device is always perfectly well localized in space; ii) the probabilities for the possible outcomes are distributed in agreement with the Born probability rule; iii) at the end of the measurement the state of the microscopic system has collapsed to the eigenstate corresponding to the measured eigenvalue. This analysis shows rigorously how dynamical reduction models provide a consistent solution to the measurement problem of quantum mechanics.Comment: 24 pages, RevTeX. Minor changes mad

    Non-interferometric Test of Collapse Models in Optomechanical Systems

    Get PDF
    The test of modifications to quantum mechanics aimed at identifying the fundamental reasons behind the un-observability of quantum mechanical superpositions at the macro-scale is a crucial goal of modern quantum mechanics. Within the context of collapse models, current proposals based on interferometric techniques for their falsification are far from the experimental state-of-the-art. Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing the need for the preparation of quantum superposition states might help us addressing non-linear stochastic mechanisms such as the one at the basis of the continuous spontaneous localisation model.Comment: 6 pages, accepted for publication in Phys. Rev. Lett.

    Effect of metal clusters on the swelling of gold-fluorocarbon-polymer composite films

    Full text link
    We have investigated the phenomenon of swelling due to acetone diffusion in fluorocarbon polymer films doped with different gold concentrations below the percolation threshold. The presence of the gold clusters in the polymer is shown to improve the mixing between the fluorocarbon polymer and the acetone, which is not a good solvent for this kind of polymers. In order to explain the experimental results the stoichiometry and the morphology of the polymer--metal system have been studied and a modified version of the Flory--Huggins model has been developed

    Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    Full text link
    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.Comment: accepted by NATURE Scientific Reports, 12 pages, 1 figures, 2 table

    Wells and ill-fare: impacts of well failures on cultivators in hard rock areas of Madhya Pradesh

    Get PDF
    WellsDrillingCostsGroundwater depletionWater tableGroundwater irrigationOwnershipEconomic impactSocial impactCrop managementFood security

    Collapse models with non-white noises

    Full text link
    We set up a general formalism for models of spontaneous wave function collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schrodinger terms of the equation induce the collapse of the wave function to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the ``imaginary'' noise trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J. Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509

    The Hilbert space operator formalism within dynamical reduction models

    Full text link
    Unlike standard quantum mechanics, dynamical reduction models assign no particular a priori status to `measurement processes', `apparata', and `observables', nor self-adjoint operators and positive operator valued measures enter the postulates defining these models. In this paper, we show why and how the Hilbert-space operator formalism, which standard quantum mechanics postulates, can be derived from the fundamental evolution equation of dynamical reduction models. Far from having any special ontological meaning, we show that within the dynamical reduction context the operator formalism is just a compact and convenient way to express the statistical properties of the outcomes of experiments.Comment: 25 pages, RevTeX. Changes made and two figures adde
    corecore