10,693 research outputs found
The quantum theory of measurement within dynamical reduction models
We analyze in mathematical detail, within the framework of the QMUPL model of
spontaneous wave function collapse, the von Neumann measurement scheme for the
measurement of a 1/2 spin particle. We prove that, according to the equation of
the model: i) throughout the whole measurement process, the pointer of the
measuring device is always perfectly well localized in space; ii) the
probabilities for the possible outcomes are distributed in agreement with the
Born probability rule; iii) at the end of the measurement the state of the
microscopic system has collapsed to the eigenstate corresponding to the
measured eigenvalue. This analysis shows rigorously how dynamical reduction
models provide a consistent solution to the measurement problem of quantum
mechanics.Comment: 24 pages, RevTeX. Minor changes mad
Non-interferometric Test of Collapse Models in Optomechanical Systems
The test of modifications to quantum mechanics aimed at identifying the
fundamental reasons behind the un-observability of quantum mechanical
superpositions at the macro-scale is a crucial goal of modern quantum
mechanics. Within the context of collapse models, current proposals based on
interferometric techniques for their falsification are far from the
experimental state-of-the-art. Here we discuss an alternative approach to the
testing of quantum collapse models that, by bypassing the need for the
preparation of quantum superposition states might help us addressing non-linear
stochastic mechanisms such as the one at the basis of the continuous
spontaneous localisation model.Comment: 6 pages, accepted for publication in Phys. Rev. Lett.
Effect of metal clusters on the swelling of gold-fluorocarbon-polymer composite films
We have investigated the phenomenon of swelling due to acetone diffusion in
fluorocarbon polymer films doped with different gold concentrations below the
percolation threshold. The presence of the gold clusters in the polymer is
shown to improve the mixing between the fluorocarbon polymer and the acetone,
which is not a good solvent for this kind of polymers. In order to explain the
experimental results the stoichiometry and the morphology of the polymer--metal
system have been studied and a modified version of the Flory--Huggins model has
been developed
Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules
Collapse models provide a theoretical framework for understanding how
classical world emerges from quantum mechanics. Their dynamics preserves
(practically) quantum linearity for microscopic systems, while it becomes
strongly nonlinear when moving towards macroscopic scale. The conventional
approach to test collapse models is to create spatial superpositions of
mesoscopic systems and then examine the loss of interference, while
environmental noises are engineered carefully. Here we investigate a different
approach: We study systems that naturally oscillate --creating quantum
superpositions-- and thus represent a natural case-study for testing quantum
linearity: neutrinos, neutral mesons, and chiral molecules. We will show how
spontaneous collapses affect their oscillatory behavior, and will compare them
with environmental decoherence effects. We will show that, contrary to what
previously predicted, collapse models cannot be tested with neutrinos. The
effect is stronger for neutral mesons, but still beyond experimental reach.
Instead, chiral molecules can offer promising candidates for testing collapse
models.Comment: accepted by NATURE Scientific Reports, 12 pages, 1 figures, 2 table
Wells and ill-fare: impacts of well failures on cultivators in hard rock areas of Madhya Pradesh
WellsDrillingCostsGroundwater depletionWater tableGroundwater irrigationOwnershipEconomic impactSocial impactCrop managementFood security
Collapse models with non-white noises
We set up a general formalism for models of spontaneous wave function
collapse with dynamics represented by a stochastic differential equation driven
by general Gaussian noises, not necessarily white in time. In particular, we
show that the non-Schrodinger terms of the equation induce the collapse of the
wave function to one of the common eigenstates of the collapsing operators, and
that the collapse occurs with the correct quantum probabilities. We also
develop a perturbation expansion of the solution of the equation with respect
to the parameter which sets the strength of the collapse process; such an
approximation allows one to compute the leading order terms for the deviations
of the predictions of collapse models with respect to those of standard quantum
mechanics. This analysis shows that to leading order, the ``imaginary'' noise
trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J.
Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509
The Hilbert space operator formalism within dynamical reduction models
Unlike standard quantum mechanics, dynamical reduction models assign no
particular a priori status to `measurement processes', `apparata', and
`observables', nor self-adjoint operators and positive operator valued measures
enter the postulates defining these models. In this paper, we show why and how
the Hilbert-space operator formalism, which standard quantum mechanics
postulates, can be derived from the fundamental evolution equation of dynamical
reduction models. Far from having any special ontological meaning, we show that
within the dynamical reduction context the operator formalism is just a compact
and convenient way to express the statistical properties of the outcomes of
experiments.Comment: 25 pages, RevTeX. Changes made and two figures adde
- …
