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The test of modifications to quantum mechanics aimed at identifying the fundamental reasons
behind the un-observability of quantum mechanical superpositions at the macro-scale is a crucial
goal of modern quantum mechanics. Within the context of collapse models, current proposals based
on interferometric techniques for their falsification are far from the experimental state-of-the-art.
Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing
the need for the preparation of quantum superposition states might help us addressing non-linear
stochastic mechanisms such as the one at the basis of the continuous spontaneous localisation model.

PACS numbers:

There is clearly a growing consensus that macroscopic
tests of quantum theory are one of the most promis-
ing ways to explore the boundaries between classical and
quantum framework with the scope of characterising the
quantum-to-classical transition. Significant theoretical
and experimental efforts have been conducted so far [1–
6], and the interest in this area of investigation is increas-
ing at a significant pace.

The (so far) lack of unquestionable observations of
quantum superpositions at the macro-scale has moti-
vated and justified the formulation of models that, by
postulating an intrinsic difference between microscopic
and macroscopic features, aim at pinpointing structural
modifications to the Schrödinger equation that account
for the explicit violation of the quantum superposi-
tion principle at the macroscopic level. The so-called
Ghirardi-Rimini-Weber (GRW) [7], Continuous Sponta-
neous Localization (CSL) [8], and Diósi-Penrose (DP)
models [10] are exemplary cases of the class of Col-
lapse Models (CMs) [11, 12] that, generally speaking, are
formulated by introducing suitable stochastic non-linear
terms to the Schrödinger equation regulating the dynam-
ics of a quantum system. Besides embodying a key test
for the quantum superposition principle, and thus a fun-
damental exploration of the potential limitations (if any)
of the quantum framework, the experimental addressing
of CMs represents a tantalising experimental challenge.

The vast majority of the proposals for the test of CMs
put forward so far is based on interferometric approaches
in which massive systems are prepared in large spatial
quantum superposition states. In order for such tests to
be effective, the superposition has to be sufficiently sta-
ble in time to allow for the performance of the necessary
measurements. Needless to say, these are extremely de-
manding requirements from a practical viewpoint. So far,
matter-wave interferometry [13] and cavity quantum op-
tomechanics [14] are generally considered as potentially

winning technological platforms in this context, and con-
siderable efforts have been made towards the develop-
ment of suited experimental configurations using levi-
tated spheres [15] or gas-phase metal cluster beams [16].
Unfortunately, the experimental state-of-the-art is still
far from allowing for a conclusive test. For instance
the leading matter-wave experiment is still two orders
of magnitude in mass away to test a CM [17, 18], a
challenging path as explained here [19]. A way forward
would be the continued technical improvement of such
experimental setups, aimed at reaching suited working
points. Alternatively, one might adopt a radically differ-
ent approach and think of non-interferometric strategies
to achieve the goal of a successful test.

Here we explore one such possibility. We show that
CMs (in general, any nonlinear effect on quantum sys-
tems) modify the spectrum of light interacting with a ra-
diation pressure-driven mechanical oscillator in a cavity
optomechanics setting in a way that could be revealed in
a simple and effective way. More specifically, we demon-
strate that the CSL-affected dynamics of the mechanical
oscillator results in an additional broadening term on the
noise spectrum of the light driving the oscillator. Under
suitable conditions, such extra broadening can be pin-
pointed to gather information on the non-linear effect
due, for instance, to a collapse mechanism. By bypassing
the necessity of preparing, manipulating, and sustaining
the quantum superposition state of a massive object, the
proposed scheme would be helpful in bringing the goal
of observing CM-induced effects closer to the current ex-
perimental capabilities.

The model.–As anticipated, in our setting the oscillator is
embodied by the moving mirror of a Fabry-Perot cavity
that is driven by an external laser field. The mechani-
cal mirror, whose oscillations are forced by its radiation-
pressure coupling with the cavity field, is assumed to be
in contact with a finite-temperature bath, which would
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FIG. 1: (Color online) Scheme of principle of the experimen-
tal setup proposed to test the CSL model. A Fabry-Perot the
optomechanical cavity is pumped by a laser at frequency ω0

and strength E . The pump populates a mode of the cavity
filed that is coupled to a vibrating mirror (frequency ωm).
A quarter-wave plate (QWP) and a polarising beam-splitter
(PBS) are used to re-direct the light leaking from the cavity
after the interaction with mechanical mirror, which is affected
by both radiation-pressure and the non-linear mechanism re-
sponsible for CSL, to a spectrum analyser. The right-most
pumping field is used to cool the mechanical oscillator to low
temperatures. Zig-zag arrows are used to represent the CSL
mechanism (λ) and the Brownian noise (ξ) affecting the me-
chanical oscillator.

in turn be responsible for mechanical Brownian motion.
In addition, we assume a non-linear mechanism to act on
the oscillator, as described by a suitable CM. The setup
is illustrated schematically in Fig. 1. The explicitly open-
system nature of the dynamics undergone by the device
is fully captured by adopting a Langevin formalism to
account for the Brownian noise, the leakage of the cavity
field, the input white noise to the cavity, and the effect
of the CM considered in our analysis. In order to set a
benchmark, we concentrate on the mass-dependent Con-
tinuous Spontaneous Localization (CSL) model, which is
one of the most-studied CMs in literature. The overall
dynamics is thus described by the equation

∂tÔ =
i

~
[Ĥ, Ô] +

i

~
[V̂t, Ô] + N̂ (1)

with Ô a generic operator of system, Ĥ the Hamitlonian
relating the coherent part of the evolution, N̂ the con-
tribution due to standard environmental noise, and V̂t
the instinsic noise accounted for using many-body CSL
theory.

By using Eq. (1) as the building block of our analy-
sis, our goal is to show that signatures of the intrinsic
collapse noise are visible in the density noise spectrum
(DNS) of the mechanical oscillator. In the following, we
assume the mirror to have mass m, natural oscillation fre-
quency ωm, and energy damping rate γm. The cavity of
length L sustains a single mode of radiation of frequency
ωc described by the bosonic annihilation and creation op-
erators â and â†. The external pump has frequency ω0

and input power P . In a rotating frame at the frequency

of the external pump, the model Hamiltonian reads

Ĥ = ~(ωc−ω0)â†â+
1

2
mωmq̂

2+
p̂2

2m
−~χâ†âq̂+i~E(â†−â),

(2)
where q̂ is the position operator of the center-of-mass of
the mechanical mirror, χ = ωc/L is the optomechanical
coupling rate, and E =

√
2κP/~ω0 quantifies the cavity-

pump coupling (κ is the cavity single-photon decay rate).
The interaction term −~χâ†âq̂, which puts together the
mechanical mirror and the cavity field, describes the op-
tomechanical coupling under the assumption of large free
spectral range [22]. As illustrated in the Supplementary
Information available at [20], the stochastic linear poten-
tial V̂t can be cast into the form

V̂t = −~
√
λwt q̂, (3)

where wt describes white noise characterized by the sta-
tistical properties E(wt) = 0, and E(wt, ws) = δ(t − s).
Here E(·) indicates expectation value and E(·, ·) stands
for a correlation function. Moreover [20]

λ =
γ

3

3∑
k=1

∫
e
− |r−r′|2

4r2
C

(2
√
π rC)3

∂rk%(r) ∂r′k%(r′)dr dr′ (4)

with %(r) the mass density of the mechanical mirror,
rC = 10−7m a characteristic length entering the CSL
model, and γ a coefficient that measures the strength of
the coupling with collapse noise. Ghirardi, Pearle and
Rimini [8] set γGRW ' 10−36m3s−1, while Adler [9] sets
γA ' 10−28m3s−1. Much larger or smaller values are
ruled out [8, 9]. As a benchmark for the quantification
of λ, one can consider a homogeneous spherical object of
radius R and mass m. Using Eq. (4), one thus gets

λ ≈ 3γ m2

8π
3
2m2

0rC R
4

(1− e−R
2/r2C ) [m0 = 1 amu]. (5)

Let us now get back to Eq. (1). We now have all the in-
gredients to write explicitly as a set of quantum Langevin
equations reading [21]

∂tq̂ = p̂/m,

∂tp̂ = −mω2
mq̂ + ~χ â†â− γm p̂+ ξ̂ + ~

√
λwt,

∂tâ = i(ω0 − ωc)â+ i χ q̂ â− κ â+
√

2κ âin.

(6)

where we have introduced the cavity input noise operator
âin, the Brownian-motion Langevin operator ξ̂ (describ-
ing the incoherent motion of the mechanical mirror aris-
ing from the coupling with the background of phononic
modes due to its physical support). These sources of
noise are characterized by the two-time correlators [21]

E(ξ̂(t), ξ̂(t′)) =
~mγm

2π

∫
ωe−iω(t−t′)[coth(βω) + 1]dω,

E(âin(t), âin(t′)) = E(â†in(t), âin(t′)) = 0,

E(âin(t)â†in(t′)) = δ(t− t′)
(7)
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with β = ~/(2kBT ), kB the Boltzmann constant, and T
the temperature of the phononic bath with which the me-
chanical mirror is at equilibrium. This set of equations
is in general very difficult to solve due to the non-linear
nature of the optomechanical coupling (see very recent
progress towards the treatment of the full non-linear pro-
cess in Ref. [23]). However, under the assumption of large
pumping (i.e. large input power of the driving field), we
can expand the field and mirror operators in fluctuations
around their respective mean values v as v̂ = v + δv̂
with v = (q, p, a). The steady-state mean values can

be easily determined and used to derive a simplified set
of equations for the fluctuation operators that can be
solved in frequency space [21]. Leaving the details of an
otherwise straightforward calculation aside, we can focus
on the form of the symmetrized two-frequency correla-
tion function S(ω)δ(ω+Ω) = E(q̂(ω)q̂(Ω)+ q̂(Ω)q̂(ω))/2,
which embodies the DNS of the mirror’s position. By as-
suming Markovianity of the mechanical Brownian
motion, which justified in the limit of moderate
temperature and small mechanical damping, we
get

S(ω) =
2α2

s~2κχ2(∆2 + κ2 + ω2) + ~mω[(∆2 + κ2 − ω2)2 + 4κ2ω2][γm coth (βω) + Λ]

|2α2
s∆~χ2 +m (ω2 − ω2

m − iγmω) [∆2 + (κ+ iω)2]|2
(8)

with Λ = λ (~/mωm), ∆ ' ωc − ω0 the cavity-pump de-
tuning, and αs = E/

√
κ2 + ∆2 being the steady-state

amplitude of the cavity field. Eq. (8) is the key for-
mal result of this analysis and the focus of the analy-
sis that we will present in the remainder of this work.
It is worth stressing that an alternative approach
to the calculations presented here would be the
explicit modification of the two-time correlator
E(ξ̂(t), ξ̂(t′)) in Eq. (7) with the replacement ξ̂ →
ξ̂ + ~

√
λωt and the Markov approximation for the

mechanical Brownian motion.
Discussion.– Clearly, the CSL mechanism manifests itself
in the DNS as an addition to the thermal contribution
embodied by coth(βω) [cf. Eq.(8)]. It is thus imme-
diate to realise that in order to magnify the effect due
to the CSL up to the point of making it observable, we
should deplete the thermal contributions to the DNS.
This requires a low initial temperature of the mechanical
mirror and, possibly, the use of an additional radiation
pressure-based passive cooling mechanisms that brings
the mechanical system in equilibrium at a lower temper-
ature than that of its surrounding bath. This is equiva-
lent to assuming that the mirror is in a thermal state at
a low effective temperature T . Moreover, by arranging
for a large detuning ∆, we can achieve conditions such
that the alleged CSL mechanisms is actually key in de-
termining the steady-state conditions of the mechanical
mirror. In fact, from the expression above, and using the
definitions of the parameters entering S(ω), one can see
that

lim
(β,∆)→∞

S(ω) ' ~(γm + Λ)

mωmγ2
m

−→
γm�Λ

~Λ

mωmγ2
m

. (9)

Needless to say, the situation is not achievable in actual
experiments, where only a finite detuning and a non-zero
temperature are achievable in practice. However, as we

will see, this dos not preclude, in principle, the observable
nature of the CSL effects.

In Fig. 2 (a), for instance, we compare the DNS of
the mechanical mirror with and without CSL effects at a
moderately large detuning and for values of the key pa-
rameters that are not far from experimental realizability.
Clearly, by acting like an additional term to the natural
thermal broadening of the noise spectrum of the mirror,
the CSL mechanisms results in a wider S(ω) and does
not affect the peak position of the spectrum. This sug-
gests that an effective way to determine it quantitatively
would be to calculate the area underneath the spectrum,
thus inferring the modification that such additional term
induces on the average energy of the mirror. We have
thus considered the quantity

I =

∫∞
−∞ S(ω) dω∫∞

−∞ SΛ→0(ω) dω
, (10)

which gives us a quantitative estimate of the relative in-
crease of the area under the DNS for Λ 6= 0 with respect
to the case of no CSL mechanism. In Fig. 2 (b) we show
the behavior of such a figure of merit against the value
of Λ, calculated using the parameter γA (which is
much larger than the estimate provided by Ghi-
rardi, Pearle and Rimini, and thus offers more
chances of being actually observed), and for some
choices of the detuning: at large detunings, I appears
to be a linear function of Λ and for ∆/κ & 1 (we no-
tice that we work in the bad-cavity regime, which is
much easier to achieve, experimentally), and the
CSL mechanism could result in a sizeable increase of the
DNS area. Needless to say, the actual value by which
such area increases strongly depends on the set of pa-
rameters that are used to model the dynamics of the
system and by no means we claim for optimality. It is
worth mentioning, finally, that as shown in Ref. [21] and
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FIG. 2: (Color online) (a) Main panel: DNS S(ω) against the frequency ω for ωm/2π = 2.75 × 105Hz, γm/2π = ωm/105,
L = 25mm, P = 4mW, κ = 5× 107Hz, T = 1mK, and for a cantilever of 1µm of linear dimension. We have compared the DNS
without any CSL effect (black dashed curve) to the one corresponding to λ = λA (red solid line), for m = 15ng. Inset: Same
as the main panel but for m = 150ng. All curves are evaluated at ∆ = 4κ, which results in a lower effective temperature of
the mechanical mirror. (b) We plot the area underneath the DNS S(ω) against m for two choices of the detuning and λ = λA.
Other parameters are as in Fig. 2(a). The case of no CSL mechanism corresponds to a horizontal line at I = 1.

experimentally demonstrated in many optomechanics ex-
periments, the light leaking out of the cavity can be used
to reconstruct the spectrum of the intra-cavity mechani-
cal mirror. The use of standard input-output rela-
tions δâout + δâin =

√
2κδâ, linking the extra-cavity

field to the input noise and the intra-cavity sig-
nal, shows that the same signatures of the CSL mech-
anism persist in the extra-cavity signal, which can be
effectively used to infer the value of Λ and, from this, the
characteristic parameter λ of the CSL model. Details
of this analysis are provided in Ref. [20].

Conclusions.– Our analysis supports the idea that the
effects of non-linear stochastic modifications to quan-
tum mechanics, such as those that characterize the CSL
model, are observable by adopting an indirect approach
that does not rely on the ad hoc creation of a quantum
superposition state. We have illustrated such a possibil-
ity using a cavity optomechanics setting where the noise
properties of the field leaking from a Fabry-Perot cavity
with a vibrating end mirror carry information on poten-
tial influences due to collapse-like mechanisms. Our pro-
posal appears to only require low operating temperatures
of the mechanical mirror, a condition that is met in most
of the cutting-edge experiments in cavity optomechanics
reported so far [14]. Moreover, although we have focused
our discussion to the end-mirror configuration of an op-
tomechanical setup, it is clearly perfectly suited to be
adapted to both membrane-in-the-middle and levitating-
nanosphere configurations, therefore embodying a gen-
eral paradigm of vast appeal.
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