2,896 research outputs found
Engaging Students Engaging Industry Engaging Enterprise
A reflective piece on how a small team of students and academics gained more awareness of their own sense of enterprise and creativity. The case study examines the phases and crisis points of the whole event process and identifies some of the key learning outcomes for all involved
A new twist to preheating
Metric perturbations typically strengthen field resonances during preheating.
In contrast we present a model in which the super-Hubble field resonances are
completely {\em suppressed} when metric perturbations are included. The model
is the nonminimal Fakir-Unruh scenario which is exactly solvable in the
long-wavelength limit when metric perturbations are included, but exhibits
exponential growth of super-Hubble modes in their absence. This gravitationally
enhanced integrability is exceptional, both for its rarity and for the power
with which it illustrates the importance of including metric perturbations in
consistent studies of preheating. We conjecture a no-go result - there exists
no {\em single-field} model with growth of cosmologically-relevant metric
perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review
Preheating of the nonminimally coupled inflaton field
We investigate preheating of an inflaton field coupled nonminimally to
a spacetime curvature. In the case of a self-coupling inflaton potential
, the dynamics of preheating changes by the effect of
the negative . We find that the nonminimal coupling works in two ways.
First, since the initial value of inflaton field for reheating becomes
smaller with the increase of , the evolution of the inflaton quanta is
delayed for fixed . Second, the oscillation of the inflaton field is
modified and the nonadiabatic change around occurs significantly. That
makes the resonant band of the fluctuation field wider. Especially for strong
coupling regimes , the growth of the inflaton flutuation is
dominated by the resonance due to the nonminimal coupling, which leads to the
significant enhancement of low momentum modes. Although the final variance of
the inflaton fluctuation does notchange significantly compared with the
minimally coupled case, we have found that the energy transfer from the
homogeneous inflaton to created particles efficiently occurs for .Comment: 13pages, 11figure
Massless Metric Preheating
Can super-Hubble metric perturbations be amplified exponentially during
preheating ? Yes. An analytical existence proof is provided by exploiting the
conformal properties of massless inflationary models. The traditional conserved
quantity \zeta is non-conserved in many regions of parameter space. We include
backreaction through the homogeneous parts of the inflaton and preheating
fields and discuss the role of initial conditions on the post-preheating
power-spectrum. Maximum field variances are strongly underestimated if metric
perturbations are ignored. We illustrate this in the case of strong
self-interaction of the decay products. Without metric perturbations,
preheating in this case is very inefficient. However, metric perturbations
increase the maximum field variances and give alternative channels for the
resonance to proceed. This implies that metric perturbations can have a large
impact on calculations of relic abundances of particles produced during
preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D.
Contains substantial new analysis of the ranges of parameter space for which
large changes to the inflation-produced power spectrum are expecte
Post-Inflationary Reheating
We study a model for reheating that has been much investigated for parametric
resonance, having a quartic interaction of the scalar inflaton with another
scalar field. Attention is particularly on the quantum excitations of the
inflaton field and the metric perturbation with a smooth transition from
quantum to classical stochastic states, followed through from a specific
inflation model to a state including a relativistic fluid. The scalar fields
enter non-perturbatively but the metric enters perturbatively, and the validity
of this latter is assessed. In this model our work seems to point the large
scale curvature parameter changing.Comment: 25 pages, 6 figures. Coding error(misprint) corrected:figures and
some conclusions change
Spinodal effect in the natural inflation model
Recently, Cormier and Holman pointed out that fluctuations of an inflaton
field are significantly enhanced in the model of {\it spinodal
inflation} with a potential for which the second derivative
changes sign. As an application of this model, we investigate
particle production in the natural inflation model with a potential
by making use of the Hartree approximation. For
typical mass scales GeV, and GeV, we find that growth of fluctuations relevantly occurs
for the initial value of inflaton . Especially for
, maximum fluctuations are so large that secondary
inflation takes place by produced fluctuations. In this case, the achieved
number of -folding becomes much larger than in the case where an effect of
spinodal instability is neglected.Comment: 16pages, 5figure
Inflationary Reheating in Grand Unified Theories
Grand unified theories may display multiply interacting fields with strong
coupling dynamics. This poses two new problems: (1) What is the nature of
chaotic reheating after inflation, and (2) How is reheating sensitive to the
mass spectrum of these theories ? We answer these questions in two interesting
limiting cases and demonstrate an increased efficiency of reheating which
strongly enhances non-thermal topological defect formation, including monopoles
and domain walls. Nevertheless, the large fluctuations may resolve this
monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which
non-thermal destabilsation of discrete symmetries occurs at reheating.Comment: 4 pages, 5 ps figures - 1 colour, Revtex. Further (colour & 3-D)
figures available from http://www.sissa.it/~bassett/reheating/ . Matched to
version to appear in Phys. Rev. let
New constraints on multi-field inflation with nonminimal coupling
We study the dynamics and perturbations during inflation and reheating in a
multi-field model where a second scalar field is nonminimally coupled to
the scalar curvature ). When is positive, the usual
inflationary prediction for large-scale anisotropies is hardly altered while
the fluctuation in sub-Hubble modes can be amplified during preheating
for large . For negative values of , however, long-wave modes of the
fluctuation exhibit exponential increase during inflation, leading to
the strong enhancement of super-Hubble metric perturbations even when
is less than unity. This is because the effective mass becomes negative
during inflation. We constrain the strength of and the initial by
the amplitude of produced density perturbations. One way to avoid nonadiabatic
growth of super-Hubble curvature perturbations is to stabilize the mass
through a coupling to the inflaton. Preheating may thus be necessary in these
models to protect the stability of the inflationary phase.Comment: 20 pages, 8 figures, submitted to Physical Review
The physical determinants of the thickness of lamellar polymer crystals
Based upon kinetic Monte Carlo simulations of crystallization in a simple
polymer model we present a new picture of the mechanism by which the thickness
of lamellar polymer crystals is constrained to a value close to the minimum
thermodynamically stable thickness. This description contrasts with those given
by the two dominant theoretical approaches.Comment: 4 pages, 4 figures, revte
Collective Decision Dynamics in the Presence of External Drivers
We develop a sequence of models describing information transmission and
decision dynamics for a network of individual agents subject to multiple
sources of influence. Our general framework is set in the context of an
impending natural disaster, where individuals, represented by nodes on the
network, must decide whether or not to evacuate. Sources of influence include a
one-to-many externally driven global broadcast as well as pairwise
interactions, across links in the network, in which agents transmit either
continuous opinions or binary actions. We consider both uniform and variable
threshold rules on the individual opinion as baseline models for
decision-making. Our results indicate that 1) social networks lead to
clustering and cohesive action among individuals, 2) binary information
introduces high temporal variability and stagnation, and 3) information
transmission over the network can either facilitate or hinder action adoption,
depending on the influence of the global broadcast relative to the social
network. Our framework highlights the essential role of local interactions
between agents in predicting collective behavior of the population as a whole.Comment: 14 pages, 7 figure
- …