31 research outputs found

    Knockout of the dhfr-ts Gene in Trypanosoma cruzi Generates Attenuated Parasites Able to Confer Protection against a Virulent Challenge

    Get PDF
    Chagas disease is the clinical manifestation of the infection produced by the flagellate parasite Trypanosoma cruzi and currently there is no vaccine to prevent this disease. Therefore, different approaches or alternatives are urgently needed. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage. However, the use of live parasites as inmunogens is controversial due to the risk of reversion to a virulent phenotype. In this work we genetically manipulated a naturally attenuated strain of T. cruzi in order to produce parasites with impaired replication and infectivity, using the mutation as a safety device against reversion to virulence. We show that genetically modified parasites display a lower proliferation rate in vitro and induced almost undetectable levels of T. cruzi specific CD8+ T cells when injected in mice. Furthermore, the immune response induced by these live mutant parasites confers protection against a subsequent virulent infection even a year after the original immunization

    Cancer immunotherapy by immunosuppression

    Get PDF
    We have previously suggested that the stimulatory effect of a weak immune reaction on tumor growth may be necessary for the growth of incipient tumors. In the present paper, we enlarge upon and extend that idea by collecting evidence in the literature bearing upon this new hypothesis that a growing cancer, whether in man or mouse, is throughout its lifespan, probably growing and progressing because of continued immune stimulation by a weak immune reaction. We also suggest that prolonged immunosuppression might interfere with progression and thus be an aid to therapy. While most of the considerable evidence that supports the hypothesis comes from observations of experimental mouse tumors, there is suggestive evidence that human tumors may behave in much the same way, and as far as we can ascertain, there is no present evidence that necessarily refutes the hypothesis

    The Potential Economic Value of a Trypanosoma cruzi (Chagas Disease) Vaccine in Latin America

    Get PDF
    The substantial burden of Chagas disease, especially in Latin America, and the limitations of currently available treatment and control strategies have motivated the development of a Trypanosoma cruzi (T. cruzi) vaccine. Evaluating a vaccine's potential economic value early in its development can answer important questions while the vaccine's key characteristics (e.g., vaccine efficacy targets, price points, and target population) can still be altered. This can assist vaccine scientists, manufacturers, policy makers, and other decision makers in the development and implementation of the vaccine. We developed a computational economic model to determine the cost-effectiveness of introducing a T. cruzi vaccine in Latin America. Our results showed vaccination to be very cost-effective, in many cases providing both cost savings and health benefits, even at low infection risk and vaccine efficacy. Moreover, our study suggests that a vaccine may actually “pay for itself”, as even a relatively higher priced vaccine will generate net cost savings for a purchaser (e.g., a country's ministry of health). These findings support continued investments in and efforts toward the development of a human T. cruzi vaccine

    Cost-Effectiveness of Chagas Disease Vector Control Strategies in Northwestern Argentina

    Get PDF
    Despite decreasing rates of prevalence and incidence, Chagas disease remains a serious problem in Latin America, especially for the rural poor. Without vaccines, control and prevention rely mostly on residual spraying of insecticides. Under the aegis of the Southern Cone Initiative, and in agreement with global trends in decentralization of the health systems, in 1992 the Argentinean vector control launched a new vector control program based on community participation. The present study represents the first thorough evaluation of the overall performance of such vector control program and the first comparative assessment of the cost-effectiveness of different vector control strategies in a highly endemic rural area of northwestern Argentina. Supported by results of independent studies, the present work shows that in rural, poor and dispersed areas of the Gran Chaco region, the implementation of a mixed (i.e., vertical attack phase followed by horizontal surveillance) strategy constantly supervised and supported by national or local vector control programs would be the most cost-effective option to interrupt vector-borne transmission of Chagas disease
    corecore