2 research outputs found

    COMAP Early Science: II. Pathfinder Instrument

    Full text link
    Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the concept and develop the technology for future experiments, as well as delivering early science products. With 19 receiver channels in a hexagonal focal plane arrangement on a 10.4 m antenna, and an instantaneous 26-34 GHz frequency range with 2 MHz resolution, it is ideally suited to measuring CO(JJ=1-0) from z3z\sim3. In this paper we discuss strategies for designing and building the Pathfinder and the challenges that were encountered. The design of the instrument prioritized LIM requirements over those of ancillary science. After a couple of years of operation, the instrument is well understood, and the first year of data is already yielding useful science results. Experience with this Pathfinder will drive the design of the next generations of experiments.Comment: Paper 2 of 7 in series. 27 pages, 28 figures, submitted to Ap

    COMAP Early Science: I. Overview

    Full text link
    The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1-0) emission from z=2.4z=2.4-3.43.4 and a fainter contribution from CO(2-1) at z=6z=6-8, the Pathfinder is surveying 1212 deg2^2 in a 5-year observing campaign to detect the CO signal from z3z\sim3. Using data from the first 13 months of observing, we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\mathrm{K}^2 \mathrm{Mpc}^3 on scales k=0.0510.62Mpc1k=0.051-0.62 \mathrm{Mpc}^{-1} - the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature-bias product) of Tb2<49\langle Tb\rangle^2<49 μ\muK2^2 - nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecast a detection of the power spectrum after 5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO-galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR.Comment: Paper 1 of 7 in series. 18 pages, 16 figures, submitted to Ap
    corecore