15 research outputs found

    Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites

    Get PDF
    Constant detection and monitoring of archaeological sites and objects have always been an important national goal for many countries. The early identification of changes is crucial to preventive conservation. Archaeologists have always considered using service drones to automate collecting data on and below the ground surface of archaeological sites, with cost and technical barriers being the main hurdles against the wide-scale deployment. Advances in thermal imaging, depth imaging, drones, and artificial intelligence have driven the cost down and improved the quality and volume of data collected and processed. This paper proposes an end-to-end framework for archaeological sites detection and monitoring using autonomous service drones. We mount RGB, depth, and thermal cameras on an autonomous drone for low-altitude data acquisition. To align and aggregate collected images, we propose two-stage multimodal depth-to-RGB and thermal-to-RGB mosaicking algorithms. We then apply detection algorithms to the stitched images to identify change regions and design a user interface to monitor these regions over time. Our results show we can create overlays of aligned thermal and depth data on RGB mosaics of archaeological sites. We tested our change detection algorithm and found it has a root mean square error of 0.04. To validate the proposed framework, we tested our thermal image stitching pipeline against state-of-the-art commercial software. We cost-effectively replicated its functionality while adding a new depth-based modality and created a user interface for temporally monitoring changes in multimodal views of archaeological sites

    Automated Archaeological Feature Detection Using Deep Learning on Optical UAV Imagery: Preliminary Results

    Get PDF
    This communication article provides a call for unmanned aerial vehicle (UAV) users in archaeology to make imagery data more publicly available while developing a new application to facilitate the use of a common deep learning algorithm (mask region-based convolutional neural network; Mask R-CNN) for instance segmentation. The intent is to provide specialists with a GUI-based tool that can apply annotation used for training for neural network models, enable training and development of segmentation models, and allow classification of imagery data to facilitate auto-discovery of features. The tool is generic and can be used for a variety of settings, although the tool was tested using datasets from the United Arab Emirates (UAE), Oman, Iran, Iraq, and Jordan. Current outputs suggest that trained data are able to help identify ruined structures, that is, structures such as burials, exposed building ruins, and other surface features that are in some degraded state. Additionally, qanat(s), or ancient underground channels having surface access holes, and mounded sites, which have distinctive hill-shaped features, are also identified. Other classes are also possible, and the tool helps users make their own training-based approach and feature identification classes. To improve accuracy, we strongly urge greater publication of UAV imagery data by projects using open journal publications and public repositories. This is something done in other fields with UAV data and is now needed in heritage and archaeology. Our tool is provided as part of the outputs given

    Coronavirus disease 2019 (COVID-19) excess mortality outcomes associated with pandemic effects study (COPES): A systematic review and meta-analysis

    Get PDF
    Background and aimWith the Coronavirus Disease 2019 (COVID-19) pandemic continuing to impact healthcare systems around the world, healthcare providers are attempting to balance resources devoted to COVID-19 patients while minimizing excess mortality overall (both COVID-19 and non-COVID-19 patients). To this end, we conducted a systematic review (SR) to describe the effect of the COVID-19 pandemic on all-cause excess mortality (COVID-19 and non-COVID-19) during the pandemic timeframe compared to non-pandemic times.MethodsWe searched EMBASE, Cochrane Database of SRs, MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Cochrane Controlled Trials Register (CENTRAL), from inception (1948) to December 31, 2020. We used a two-stage review process to screen/extract data. We assessed risk of bias using Newcastle-Ottawa Scale (NOS). We used Critical Appraisal and Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology.ResultsOf 11,581 citations, 194 studies met eligibility. Of these studies, 31 had mortality comparisons (n = 433,196,345 participants). Compared to pre-pandemic times, during the COVID-19 pandemic, our meta-analysis demonstrated that COVID-19 mortality had an increased risk difference (RD) of 0.06% (95% CI: 0.06–0.06% p < 0.00001). All-cause mortality also increased [relative risk (RR): 1.53, 95% confidence interval (CI): 1.38–1.70, p < 0.00001] alongside non-COVID-19 mortality (RR: 1.18, 1.07–1.30, p < 0.00001). There was “very low” certainty of evidence through GRADE assessment for all outcomes studied, demonstrating the evidence as uncertain.InterpretationThe COVID-19 pandemic may have caused significant increases in all-cause excess mortality, greater than those accounted for by increases due to COVID-19 mortality alone, although the evidence is uncertain.Systematic review registration[https://www.crd.york.ac.uk/prospero/#recordDetails], identifier [CRD42020201256]

    B-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast

    Get PDF
    Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCFCdc4 ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APCCdh1). We have determined, however, that the Kip1 and Cin8 proteins are present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCFCdc4 target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors

    A Pilot Study Comparing HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas by Whole Exome Sequencing

    No full text
    Background. Next-generation sequencing of cancers has identified important therapeutic targets and biomarkers. The goal of this pilot study was to compare the genetic changes in a human papillomavirus- (HPV-)positive and an HPV-negative head and neck tumor. Methods. DNA was extracted from the blood and primary tumor of a patient with an HPV-positive tonsillar cancer and those of a patient with an HPV-negative oral tongue tumor. Exome enrichment was performed using the Agilent SureSelect All Exon Kit, followed by sequencing on the ABI SOLiD platform. Results. Exome sequencing revealed slightly more mutations in the HPV-negative tumor (73) in contrast to the HPV-positive tumor (58). Multiple mutations were noted in zinc finger genes (ZNF3, 10, 229, 470, 543, 616, 664, 638, 716, and 799) and mucin genes (MUC4, 6, 12, and 16). Mutations were noted in MUC12 in both tumors. Conclusions. HPV-positive HNSCC is distinct from HPV-negative disease in terms of evidence of viral infection, p16 status, and frequency of mutations. Next-generation sequencing has the potential to identify novel therapeutic targets and biomarkers in HNSCC.Peer Reviewe
    corecore