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Abstract: Constant detection and monitoring of archaeological sites and objects have always been
an important national goal for many countries. The early identification of changes is crucial to
preventive conservation. Archaeologists have always considered using service drones to automate
collecting data on and below the ground surface of archaeological sites, with cost and technical
barriers being the main hurdles against the wide-scale deployment. Advances in thermal imaging,
depth imaging, drones, and artificial intelligence have driven the cost down and improved the quality
and volume of data collected and processed. This paper proposes an end-to-end framework for
archaeological sites detection and monitoring using autonomous service drones. We mount RGB,
depth, and thermal cameras on an autonomous drone for low-altitude data acquisition. To align and
aggregate collected images, we propose two-stage multimodal depth-to-RGB and thermal-to-RGB
mosaicking algorithms. We then apply detection algorithms to the stitched images to identify change
regions and design a user interface to monitor these regions over time. Our results show we can
create overlays of aligned thermal and depth data on RGB mosaics of archaeological sites. We
tested our change detection algorithm and found it has a root mean square error of 0.04. To validate
the proposed framework, we tested our thermal image stitching pipeline against state-of-the-art
commercial software. We cost-effectively replicated its functionality while adding a new depth-based
modality and created a user interface for temporally monitoring changes in multimodal views of
archaeological sites.

Keywords: aerial monitoring; unmanned aerial vehicles; mosaicking; cultural heritage detection;
photogrammetry; open-source software

1. Introduction

Experts in digital cultural heritage endeavor to use detection techniques to document
the physical dimensions of sites and cultural objects. They seek to use and keep digital
material documented so that they remain usable for wider research and documentation [1].
Digital detection of heritage and historical places in reference-scaled models has become
crucial, as many heritage sites are threatened by different human and natural factors. Since
the 1970s, archaeologists have known about the potential of infrared thermal images for
identifying structures not visible on the surface, including concentrations of materials, or
landscape elements, including ancient roads, boundaries of cultivated fields, paleoriver
beds, etc. [2].

Thermal photography has evolved into a powerful nondestructive tool for cultural
heritage conservation study [3–5]. Despite this long period, the excessive cost of the
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technologies used has greatly limited the possibilities of research. Now, a new phase
of development is emerging throughout the expanding application of service drones in
research. In particular, the recent advancements in drone technology and the development
of commercial drones with thermal cameras are permitting, on the one hand, less expensive
use costs and, on the other, accelerated reconnaissance [6–9]. Infrared thermography offers
a method of visualization that is nondestructive and capable of revealing various types
of archaeological anomaly. The advantages of remote and nondestructive examination of
cultural heritage are two-fold: data may be obtained without damage to the historic site,
and information may be collected that no other technique is capable of extracting.

The physical principle behind the analysis of thermal images is quite simple: the
materials that are above and below the soil surface absorb, emit or reflect infrared rays
in different ways, based on their composition, density and moisture content. Therefore, a
large number of archaeological elements can theoretically be identified in thermal images
as depicted in Figure 1 [10].

Figure 1. Thermal image identification of archaeological elements, introduced by the authors in [10].

There are three essential factors for archaeological features to stand out in a thermal
image, which can be summarized as follows:

1. There must be a sufficient contrast between the thermal properties of the material of
interest and those of the soil.

2. The archaeological material below the surface must be close enough to the surface to
be affected by heat flux.

3. The thermal image must be acquired when the thermal differences are more pro-
nounced as shown in Figure 2.

Figure 2. Diurnal thermal variation in different soil, introduced by the authors in [9].
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These three factors are the basis of our proposed archaeological sites detection and
monitoring framework. In the following sections, we will begin with a brief literature
review and proceed to discussing our methodology. We will then discuss our testing and
validation results and present a general conclusion from the benefits of the methodology.

The main contribution of our work is an end-to-end framework for the detection
and monitoring of archaeological sites. To achieve this goal, we also propose: (1) a two-
stage multimodal depth-to-RGB and thermal-to-RGB mosaicking algorithm to align and
aggregate collected images; (2) an AI-based detection algorithm to identify change regions
in archaeological sites; (3) and a user interface for temporal tracking.

2. Literature Review

The term thermography indicates the recording and measurement of heat radiation
using special sensors. In particular, the thermal cameras record the Thermal Radiation
Infrared (TIR), which is a part of the electromagnetic spectrum included in the infrared
range. Although the wavelength of visible light (i.e., perceptible to the naked eye) is
between 0.4 and 0.78 µm, that of the infrared is greater and ranges from 0.78 to 1000 µm, as
depicted in Figure 3.

Figure 3. Representation of the Electromagnetic Spectrum.

In turn, this range is divided into near infrared (NIR; 0.78–2.5 µm), mid-infrared (MIR;
2.5–10 µm) and far infrared (FIR; 10–1000 µm). The TIR spans over the last two categories,
positioning itself between 8–15 µm [11]; it has been determined that this is the range in which
the temperature of a ground, in the form of thermal radiation, without any interference
from the air temperature [12]. As Périsset and Tabbagh in [13] indicate, soil temperature
depends on solar radiation and exchange with the atmosphere. The temperature that we
measure on the ground derives both from infrared thermal radiation emitted by the sun
(that managed to cross-unscathed, without being reflected back, the gases that form the
atmosphere) and the infrared thermal radiation that is absorbed and reflected by both the
materials present above or near the ground. Indeed, the different physical and chemical
components of a non-homogeneous soil lead to a different absorption and consequent
emission of solar radiation, which is highlighted in a different thermal radiation measured
on the surface. It is precisely based on this phenomenon that the analysis of thermal images
with archaeological purposes relies on the materials that are above and below the ground
surface and how they absorb, emit or reflect infrared rays in different ways, based on their
own composition, density and moisture content [11,14]. According to this principle, many
archaeological elements can theoretically be identified in thermal images.

The problems that led to the scarce use of this technique, outside of satellite imagery,
were mainly related to the high cost and the poor spatial and radiometric resolution offered.
Between the 1970–80s, a large and cooled scanning radiometer was used with liquid
nitrogen that recorded thermal images on long rolls of film [11–13]. Despite the difficulty,
the methodological foundation for the use of thermography in archaeology was developed
in those early years. In particular, Périsset and Tabbagh [13] and Périsset [15] conducted a
series of controlled tests to quantify the thermal behavior of some archaeological elements
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with respect to the surrounding terrain. The work in [15] presents a summary and tests for
soil thermodynamics, including abundant mathematical notation and physical properties
used to understand the results, and how analysis can be applied to different archaeological
contexts. This work is still considered the basis for archaeological thermography, where
they demonstrate variations in thermal radiation between different elements or between
parts of land with different composition, and contrast their thermal images to determine
different physical properties that demonstrate substance origin. The four main physical
properties that determine the variations of thermal radiation between different elements
present on or in the ground are summarized as follows:

1. Thermal conductivity: A physical property that measures the ability of an element
to transmit heat (or infrared heat energy) through thermal conduction. That prop-
erty depends on the nature of the material and is measured in watts per meter-
kelvin (W/mK).

2. Volumetric heat capacity: The property that defines the amount of heat energy that
must be added to a unit of volume of a material to increase its temperature by one
degree. This property depends on the density and composition of the material and is
mostly, the reason, under the same light and temperature conditions, a stone will be
warmer than the surrounding scattered ground.

3. Thermal inertia: The property that describes the ability of a material to vary its tem-
perature more or less quickly because of changing external conditions. A high thermal
inertia value corresponds to a material that is slower in cooling or heating up as exter-
nal thermal conditions change. Water, for example, has a high value of thermal inertia,
for this reason, a moist soil will maintain a more constant temperature than a dry soil
as external conditions vary. This property is directly proportional to the volumetric
heat capacity of a material and inversely proportional to its thermal conductivity.

4. Thermal emissivity: A physical quantity that measures the efficiency of a material
to emit or reflect thermal radiation. This property, if noticeably different between
two elements, allows a visible distinction from the thermal camera. For example, an
accumulation of ceramic on the surface could be very visible in a thermal image, thanks
to the different emissivity of the ceramic with respect to the surrounding soil [2,13].

Principles explained by Périsset and Tabbagh in [13] refer to properties that can be
found and analyzed on soils without vegetation, while in the presence of vegetation what
a thermal camera can detect is not the temperature of the soil, but that of the vegetation
which is determined by the transpiration of the plants. In the early 1990s, an important
contribution to the use of thermography in the archaeological field came from Scollar et al.
in [12], who wrote a complete review of all theories expressed in the previous two decades.
Contrary to what Périsse and Tabbagh postulated, variations in the soil surface occurring
over the course of a year due to vegetation growth, humidity, plowing, and other factors
can hide or vary archaeological anomalies, this research demonstrated that variations
in heat flow during the same day can be decisive in highlighting differences in thermal
radiation due to buried archaeological elements.

Some approaches proposed installing thermal sensors on satellites and civil-use air-
craft. The resolution of the sensors in these attempts was poor and insufficient to detect
archaeological elements. The use of airborne platforms in other approaches, such as TIMS
(Thermal Infrared Multispectral Scanner), with shots taken at a much lower altitude than
satellites, had a resolution of only 5 m. Yet, it allowed a single identification of an ancient
road network [16]. The few examples of aerial thermography using high-resolution sensors,
nevertheless, required an equipment cost that was still beyond most researchers’ budgets [17].

A new development phase occurred in the early 2000s, when conventional handheld
thermal cameras used by a helicopter [18] or mounted on a platform to analyze the different
concentrations of artifacts scattered on the ground was introduced. This is depicted in
Figure 4. Several scholars began to use the same thermal camera in different approaches.
The authors in [19] mounted the camera under a kite, while authors in [20] mounted the
camera under a helium balloon. The use of handheld cameras mounted on a ground-based
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or an aerial platform allowed a punctual use of thermography, focused at an intra-site level.
The authors in [21] were the first to use these cameras and a manned motor parachute in
investigating a major research area, which also included off-site areas at a local scale.

Figure 4. Use of a manual thermal camera for the analysis of different concentration of artifacts
scattered on the ground as introduced by the authors in [22].

A large array of technological applications and scientific studies are supported by
drones due to their ability in collecting high-resolution image data [23–25]. The recent
technological advances in infrared imaging facilitated the development of high-resolution
commercial thermal cameras with smaller size and weight. These cameras can now be
mounted under drones to generate high-resolution thermal images, with a GSD of two
centimeters flying at 40 m of altitude, while significantly reducing the cost of the missions
carried out. The use of programmable drones guarantees performing flights in a precise
time frame. The timing of an aerial thermal survey is one of the most crucial factors in
determining its success, as imagery acquired just an hour apart typically shows archaeolog-
ical elements in different ways [26,27]. Due to the numerous factors that might influence
the thermal characteristics of certain features, identifying the best time for data collection,
whether seasonally or during a given diurnal cycle, remains difficult and is considered to be
one of the limitations of thermography. To date, the best examples in this field come from
the aforementioned work carried out by the authors in [27,28]. In particular, the research
carried out at the Blue J site in New Mexico made it possible to highlight the importance of
making multiple flights during the same day to identify the best time slot for recording
based on the variation in the daily thermal cycle. In this case, the researchers performed
four flights with thermal camera between 20 and 21 June 2013 (9:58 p.m., 5:18 a.m., 6:18
a.m., 7:18 a.m.) and a flight with standard camera in RGB (5:45 a.m.). The results showed
that only in the flight performed before dawn, at 5:18 a.m., the greatest number of character
archaeological anomalies were evident. This was probably because stones of the collapsed
walls and masonry structures absorb heat longer than the surrounding desert soil, making
the stones more visible in the colder hours of the morning than at the beginning of the
night when the ground still holds heat from daily solar radiation [27]. The work carried
out by the same team at the Enfield Shaker Village site in New Hampshire also highlighted
the importance of carrying out a multitemporal thermal recognition to have a complete
thermographic analysis of the survey area. In this case, the flights were carried out at
different times of the same day, but also in different months of the year (October 2016, May
and June 2017, October 2017). The results obtained showed, for this area, the maximum
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visibility of the archaeological anomalies in the time span ranges from immediately after
sunset to a few hours later, while the contrast (albeit still visible) decreased in flights carried
out before dawn, only to disappear almost completely after sunrise [28].

Airborne and satellite photography remote sensing has become an important part of
archaeological study and cultural resource management. Remote sensing, when combined
with field research, allows for quick and high-resolution documentation of old sites [29–31].
It also makes it possible to document and monitor old sites that are unreachable to field-
work, destroyed, or threatened [32,33]. Archaeologists have been experimenting with
computational approaches in remote sensing-based archaeological prospection since the
mid-2000s [34,35].

Convolutional neural networks (CNNs) are increasingly being used to solve difficult
computer vision problems including face detection, self-driving automobiles, and medical
diagnostics [36]. Although deep learning requires huge training datasets, transfer learning
allowed pre-trained CNNs to be used in domains where training datasets were limited,
such as archaeology [37,38]. Machine-learning techniques and algorithms have gradually
been included into remote sensing-based archaeological research in recent years, allowing
for the automatic discovery of sites and characteristics. Most of these applications have
used high-resolution datasets such as LiDAR [39] or WorldView imagery [40,41] to detect
small-scale characteristics. Others have attempted to monitor archaeological sites and
human influence, such as urban sprawl and looting, using multitemporal data [42,43].

The remainder of the paper is organized as follows: Section 3 introduces the materials
and methods. Section 4 discusses and compares the results of our proposed framework.
Finally, conclusions are drawn in Section 5.

3. Materials and Methods
3.1. Drone-Based Archaeological Aerial Monitoring Challenges

As many heritage sites are currently threatened by anthropogenic and natural destruc-
tion, heritage detection and monitoring is essential for the preservation and integrity of
cultural heritage structures. Although a long history of experimental data shows that depth
imaging and aerial photogrammetry and thermography are powerful tools that can reveal a
wide range of both surface and subsurface archaeological features, hurdles including the ex-
cessive deployment cost, and the spatial resolution of aircraft or satellite-acquired imagery
have restrained the use of these tools in cultural heritage detection. Recent advances in the
sophistication of vision-based sensors, artificial intelligence algorithms, and service drones
are revolutionizing archaeologists’ ability to prospect for ancient cultural features across
large areas at a low cost. These advances offer potentially transformative perspectives on
the archaeological landscape and bridge the gap between satellite, low-altitude airborne,
and terrestrial sensing of historical landscapes [27,28].

Due to the availability of several sensing devices with high precision and accuracy,
data processing and storage capabilities using cloud computing, and affordable machine
learning and big data analysis technologies, digitization of reconnaissance flights is ramp-
ing up. Digitization of flights improved the conventional practices of analyzing archaeo-
logical landscapes. It also allowed archaeologists to use real-time sensing data to detect
and forecast possible changes and anomalies in often inaccessible built cultural heritage.
Researchers have proposed using drone platforms with visible, infrared, multispectral,
hyper-spectral, laser, and radar sensors to reveal archaeological features otherwise invisible
to archaeologists with applied nondestructive techniques [44]. To improve the performance
of mapping in archaeological applications, multiple photogrammetry software platforms
were developed to capture imagery datasets and create digital models or orthoimages.
These models are used to classify and analyze the mapping results [9].

In archaeology, materials on and below the ground surface absorb, emit, transmit,
and reflect thermal infrared radiation at different rates due to differences in composition,
density, and moisture content. Accordingly, aerial thermographic imaging is used for
the detection of a wide range of archaeological features when (1) there is a sufficient
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contrast in the thermal properties of archaeological features and the ground cover; (2) the
archaeological materials are close enough to the surface to be affected by heat flux; and
(3) the image is acquired at a time when such differences are pronounced. Multiple pieces of
proprietary software have been developed allowing almost automated mapping workflows,
from acquisition to analysis of mapping results, for archaeological applications. Common
issues that arise when using these pieces of software include the automated alignment of
visual image frames captured out of specific timeframes, the alignment of small thermal
images that lack sufficient variability, and the time-consuming 3D reconstruction for spatial
analysis [45].

Aerial multimodal monitoring of cultural heritage provides a better understanding
of long-term settlement patterns and historical change [46]. The early identification of
changes in cultural heritage structure and the preventive conservation are critical for the
preservation of cultural sites and monument. In this work, we propose a framework for the
detection and monitoring of archaeological sites, and a user interface to assess and track
changes and deterioration over time. Our proposed framework is intended to combine
multiple imaging datasets to improve archaeological feature visibility. We compare the
proposed framework to the procedure carried out using proprietary software and discuss
the results.

3.2. Proposed Framework for Archaeological Aerial Monitoring

The central unit of the proposed framework is a DJI Mavic Dual Enterprise drone
controlled using a GCS (Ground Control Station) to inspect an archaeological landscape
and monitor architectural cultural heritage sites. The drone integrates an on-board RGB
and thermal cameras and an external depth camera for low-altitude data acquisition. The
on-board cameras are a visual 4K Ultra HD sensor with a bitrate of 100 Mbps and a thermal
sensor with a resolution of 160 × 120. The external depth camera is an Intel RealSense
Depth Camera D435 with a resolution of up to 1280 × 720, connected to a controlling unit
and fixed to the bottom of the drone. As depicted in Figure 5, the framework begins with
flight planning where a set of waypoints is assigned using a mission planning software
on the GCS to control the flight path. During the scheduled flights, the drone captures
calibrated RGB, depth, and thermal videos for the inspected area. After the completion of
an inspection flight, recorded videos are uploaded to a cloud server for further processing
and analysis. We retrieve the videos recorded and apply a multimodal two-stage depth-
to-RGB and thermal-to-RGB mosaicking algorithm to generate three orthomosaics. We
use the generated mosaics for built cultural heritage detection, 3D modeling, temporal
tracking, and anomalies reporting. Analysis reports are accessible to the end user through
a user interface, as explained in Section 4.3.

Figure 5. Proposed archaeological aerial monitoring system framework.
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3.3. Proposed Multimodal Depth-RGB and Thermal-RGB Mosaicking Algorithm

The deployment of service drones in archaeological aerial monitoring while controlling
the altitude produces images with an improved quality compared to the ones produced
using the conventional methods and at a lower cost. Despite the advantages obtained, the
drone-based approach creates a higher number of images to cover the same area of one
satellite or aerial photograph. This creates a need for a stitching algorithm that forms a
comprehensive view of the scene. Accordingly, we develop an algorithm that uses the drone
flight recordings to provide three orthomosaics of the entire examined area in RGB, depth,
and thermal scales. The algorithm begins with creating image sequences from the recorded
RGB, depth, or thermal flight footage. Each image frame goes through a preprocessing
stage that reduces the computational speed of the mosaic process by resizing the frame.
Motion estimation is followed by panorama construction through image warping and
blending in our proposed approach.

We first detect the Speeded-UP Robust Features (SURF) for the current and prior
greyscale frame sequences in the motion estimation. The blob features, which are candidate
points of interest in a frame, are detected through this approach. Then, for each pair of
successive frames, we extract the SURF features to determine the corresponding points
between them. To estimate the motion of the unique points between the frames, one-to-one
matching between the points on the current frame and the preceding one is required. We
use transformation estimation to estimate the transform between the current and prior
frames after retrieving the locations of the matched points in the frames.

Based on the matched pair of points, this algorithm produces a transformation matrix
that defines the motion from one frame to the next.t11 t12 t13

t21 t22 t23
t31 t32 1

 (1)

The more matched pairings with higher confidence, the more accurate the estimated
transformation will be at the cost of additional computations. We then use Equation (2),
where “n” represents the current frame and “T” represents the transformation matrix
between two successive frames, to accumulate the transform from the first frame to the
subsequent frames until all transforms for all frames in a flight video are accumulated.

T(n)× T(n− 1)× ...× T(1) (2)

We use image warping to create the panorama of the full flight video, which applies a
geometric change to the image based on the estimated transformation matrix. Each frame
can then be relocated to its corresponding position in the panorama, resulting in a fully
aligned orthomosaic. The binary mask is then used to apply image blending. The same
transformation matrices used for the RGB frame sequences are used to estimate motion
on depth, and thermal frames. Figure 6 depicts the whole mosaic pipeline, including
intermediate outputs, for an RGB flight video.

3.4. Proposed Built Cultural Heritage Detection Algorithm

We develop a neural network-based detection framework to handle the orthomosaics
produced through the video mosaicking algorithm. The proposed framework uses a
pre-trained YOLO model that detects built cultural heritage within an orthomosaic. The
detected bounding boxes of the cultural heritage structures are then handed a segmentation
tool for post-processing. We used a YOLOv2 network trained for a 512× 736 input sample
images. Each sample is associated with a file containing the class and the bounding box
information for each area in the sample. Input samples are automatically resized to the
specified size in the network parameters.
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Figure 6. Full pipeline for the proposed mosaicking algorithm using RGB flight video.

The YOLO architecture involves a convolutional neural network used to extract visual
features from the input samples. Assuming multi-level grid shaped cultural heritage area,
each sample is divided into multi-level grid with S × S, (S ∈ [8, 16, 32]) cells, and the
network predict whether a heritage structure exists in each cell in addition to four float
parameters defining the bounding box of the structure. The prediction target for each pit is
stored in a tensor with the following format:

S× S×[Cx, Cy, w, h], S = 32 for the output probability map as in Figure 7.
where:

- Cx = x-axis centroid of the bounding box.
- Cy = y-axis centroid of the bounding box.
- w = Width of the bounding box.
- h = Height of the bounding box.

Figure 7. Prediction class probability map.

Data Generation

To create a reliable network for architectural cultural heritage detection, an unbiased
data set of a large size is essential. The input to the network requires an orthomosaic
for various heritage structures captured using drones. To facilitate the process of data
acquisition, we built a physical model in the lab environment simulating a grid of cultural
heritage structures. We used tissue boxes to simulate the depth and placed heated metal
bars on top of each box to cater for the thermal difference expected between the floor
and the structure of interest. We simulated deformation over time using newspapers of
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different volumes. We used this model to generate most of the data by artificially creating
samples of different orthomosaics using images of individual structures for the purpose of
training and testing our proposed algorithms. For that, we programmed a data generation
tool that arranges the raw site images from a given data source with randomized order
and orientation to generate different orthomosaic samples. The generated samples are also
submitted for randomizing grid size and visual shift. Figure 8 shows samples of the raw
heritage structure images we used.

Figure 8. Raw heritage site data collected using the physical model.

The generated data set is processed through a data augmentation tool to increase the
data set size by 600%. We designed the augmenter to generate copies of each original
sample while randomly applying horizontal and vertical shifting, zooming, individual
manipulation of RGB channels, brightness adjustment, and perspective transformation.

3.5. Cultural Heritage Structure Modeling

The segmentation tool we use receives detected heritage structure images from the
YOLO detector then visually isolates two layers from the structure image containing its
surface and base. We use the segmentation tool to create a 3D representation for the
detected built heritage.

The segmentation algorithm targets the top and bottom layers of the heritage structure,
so they can be used for further analysis. We use the graph-cut segmentation technique to
separate the layers, which is a semi-automatic segmentation method that requires some
pixels in the target image to be labeled as definite background and others as definite
foreground (seed pixels). The algorithm then assigns large labeled weights to the corre-
sponding pixels and estimates the weights for the rest of the pixels based on their color
and adjacency properties [47]. The dimensions of detected structure’s bounding box are
used to create the temporary foreground and background labels for each layer which are
defined as a small filled rectangle inside the bounding box and a thick empty one outside it
as shown in Figure 9.

Figure 9. Labeling the foreground and background pixels automatically for the top layer.

4. Validation and Results

In this section, we validate our proposed aerial monitoring framework by discussing
the end-to-end deployment results of our system.
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4.1. Multimodal Depth-RGB and Thermal-RGB Mosaicking Algorithm Testing Results

Validation of the proposed system requires above surface large-scale archaeological
site, so we built a replica of one in the lab and flew the drone indoors. This allowed us to
validate the collected measurements and functionality under different lighting conditions
and through multiple low-altitude flight patterns. The proposed algorithm was successfully
able to generate the orthomosaics in all flights. A current drawback we are working on
solving is the accumulation of transformation estimations, which leads to a deterioration
in the performance with time. To mitigate this drawback, we deploy an AI-based detection
using YOLO in the subsequent steps of the processing pipeline. Figure 10 illustrates the
results of an indoor flight. Figures 11 and 12 show the RGB and depth mosaicking results,
respectively, in our lab environment.

Figure 10. The multimodal depth-RGB mosaicking algorithm results in the lab environment: (a) shows the drone flying
from a third person view. (b) shows the RGB view of the drone while (c) shows the depth view of the drone. (d) shows the
development of the RGB orthomosaic.

Figure 11. Stitching the drone’s RGB footage recorded in the lab environment.

Figure 12. Stitching the drone’s depth footage recorded in the lab environment.



Appl. Sci. 2021, 11, 10424 12 of 17

4.2. Built Cultural Heritage Detection Algorithm Testing

We generated 2000 synthetic orthomosaics for training and testing our detection
algorithm using our data generation tool and our physical model. 60% of the generated
mosaics were used for training, 20% for validating, and 20% for testing. The structure
detector model was trained on 15 epochs, with a mini-batch size of 16. The detector was
able to recognize 90% of the structures in the testing set. We use Piecewise learning rate
scheduling to decay the learning rate over time, set to an initial value of 0.001. A mini-batch
RMSE of 0.04 and a mini-batch loss value of 5.1 × 10−3 were achieved.

4.3. End-to-End Integration Testing and Validation

We performed end-to-end integration testing using the physical model we developed
in the lab. We used a software planner to plan multiple flights over a month following a Z
pattern. Our service drone completed its lab flight at a height of 3 m then uploaded the
light, depth, and thermal videos to the cloud server. Uploaded videos were processed by
a computing server powered by MATLAB where our proposed novel multimodal depth-
RGB and thermal-RGB mosaicking algorithm was applied to produce orthomosaics of the
inspected area. The output mosaics were then processed using YOLO and the structures
in our physical model were detected using all three imaging models. The inspection
report was then displayed on our user interface allowing the user to analyze the detected
structures and visualize the changes in these structures over time. The temporal tracking
ability facilitates the process of built cultural heritage preservation. Our Proposed user
interface is shown in Figure 13.

Figure 13. Proposed user interface displaying the detected built cultural heritage during a selected
inspection flight and providing the ability to switch between the different views to be able to analyze
anomalies in RGB, depth, and thermal scales: (a) displays the main view for inspection selection
and shows the detected built cultural heritage while (b) shows the analysis report of the selected
structure over time.

The user can select between the RGB, depth, and thermal views to analyze and
visualize the thermal and depth anomalies of a detected structure. The interface also
provides the user with an interactive 3D model of the structure and records the data to
facilitate the process of temporal tracking and heritage preservation.

4.4. Built Cultural Heritage Detection Using Photogrammetry Software

To validate our framework results, we used state-of-the-art commercial photogram-
metry software to develop a workflow for the detection of built cultural heritage in line
with the scientific literature on thermal photography outside the archaeological world [48].
In the preprocessing stage, the developed workflow converts the collected thermal frames
into the grayscale and resizes them using Algorithm A1. The RGB frames are also cropped
using Algorithm A2 to match the size of the thermal frames, then merged with them to pro-
duce single 4-band TIFF images. Merging thermal and RGB frames is implemented using
Algorithm A3. Matlab (R2019B) is used at this stage. The images are then processed using
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a proprietary photogrammetry software (Agisoft Metashape 1.3.0), from the stitching and
3D reconstruction to the extraction of single thermal orthophoto. The workflow developed
is illustrated in Figure 14.

Figure 14. Graphic representation of the workflow developed for the processing of aerial thermal images
with proprietary software: (1) Convert and resize the thermal images; (2) Crop the RGB images; (3) Merge
thermal and RGB images; (4) Photogrammetric phase; (5) Extract thermal orthophoto in Metashape.

By comparing the results obtained from both approaches, it is evident that we managed
to cost-effectively replicate the mosaicking and alignment functionalities of state-of-the-
art commercial photogrammetry software while adding a new depth-based modality
and providing a more convenient user interface for temporally monitoring changes in
multimodal views of archaeological sites.

The framework proposed is transferable and applicable for other research applications.
It facilitates the process of obtaining and comparing RGB, depth, and thermal orthomosaics
from flight missions carried out throughout the day, specifically after sunset and before
sunrise, in each survey area. It can be also used to evaluate the thermal variations occurring
when varying the recording time within a day to identify the best time frame in which the
thermal anomalies of the soil are most evident. We have tested our proposed approach
in Mount Kassar site (Castronovo di Sicilia, PA). Results showed that during the short
period before sunrise, the variations in thermal radiance are greater, and consequently the
anomalies of the ground are more evident as shown in Figure 15.

Figure 15. Comparison of thermal orthophotos obtained from missions carried out at different times
of the day (Monte Kassar, Castronovo di Sicilia, PA, USA).
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5. Conclusions and Future Work

In this paper, we propose a drone-based framework for multimodal detection and
modeling of built cultural heritage. We control the service drone using a GCS to inspect
an archaeological landscape and monitor architectural cultural heritage sites. We mount
RGB, depth, and thermal sensors on the drone for low-altitude data acquisition. After the
completion of an inspection flight, recorded videos are uploaded to a cloud server for
further processing and analysis. We use a proposed two-stage multimodal depth-to-RGB
and thermal-to-RGB mosaicking algorithm to generate orthomosaics of the monitored area.
The generated mosaics are passed to our detection algorithm to detect cultural heritage
sites within the inspected area with an accuracy of 90% and a root mean squared error of
0.4. End-users receive detailed reports after each inspection flight, including 3D models of
the detected cultural heritage sites. The proposed user interface accumulates the reports of
detected sites for temporal tracking. We tested our proposed framework in an indoor lab
environment where we built a replica of a large-scale archaeological site, and concluded it
efficiently detects and documents cultural heritage structures and facilitates the process of
preservation. We compared our framework with a workflow we developed for the detection
of built cultural heritage using state-of-the-art commercial photogrammetry software. The
results showed that we managed to cost-effectively replicate, to some extent, the mosaicking
and alignment functionalities of commercial photogrammetry software while adding a
new depth-based modality and increasing flexibility. We also proved that our proposed
framework can be used to identify the best time in which thermal anomalies in the ground
are chromatically more evident on the images. Our framework’s main limitation is the
accumulation of transformation estimations in the mosaicking algorithm, which leads
to deterioration in the performance with time. We have addressed this limitation by
deploying the AI-based detection in the subsequent steps of the proposed framework.
Further research on mosaicking techniques is needed to address this limitation better.
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Appendix A

Algorithm A1: Function to convert and resize the infrared images in Matlab
f unctionresults← myim f cn(im)
imgray← rgb2gray(im)
results← imresize(imgray, 6)

Algorithm A2: Function to crop the RGB images in Matlab
f unctionresults← myim f cn(im)
targetSize←[2880 3840]
r ← centerCropWindow2d(size(im), targetSize)
results← imcrop(im, r)

https://www.adu.ac.ae/research/research-at-adu/overview
https://www.adu.ac.ae/research/research-at-adu/overview
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Algorithm A3: Merging IR and RGB images using Matlab

f olderl ←′ /Users/Documents/MATLAB/test_rgb_resize′

f older2←′ /Users/Documents/MATLAB/test_ir_resize′

f olderout←′ /Users/Documents/MATLAB/test_ f used
out f itepattern←′ DJI_ f used%03d.ti f f ′

f ilelist1← dir( f ull f ile( f olderl,′ ∗.ti f f ′))
f ilelist2← dir( f ull f ile( f older2,′ ∗.ti f f ′))
assert(numel( f ilelistl) == numel( f ilelist2),′ Mismatchbetween f ilecount′)
f ilelistl ← natsort f iles( f ilelist1.name)
f ilelist2← natsort f iles( f f ilelist2.name)
for f idx ← 1 to numel( f ilelist1) do

rgb← imread( f ull f ile( f older1, f ilelistl f idx))
numrows← size(rgb, 1)
numcols← size(rgb, 2)
ir ← imread( f ull f ile( f older2, f ilelist2( f idx)))
data← cat(3, rgb, ir)
t← Ti f f ( f ull f ile( f olderout, sprint f (out f itepattern, f idx))′,′ w′)
setTag(t,′ Photometric′, Ti f f .Photometric.RGB)
setTag(t,′ Compression′, Ti f f .Compression.None)
setTag(t,′ BitsPerSample′, 8)
setTag(t,′ SamplesPerPixel′, 4)
setTag(t,′ SampleFormat′, Ti f f .SampleFormatAInt)
setTag(t,′ ExtraSamples′, Ti f f .ExtraSamples.Unspeci f ied)
setTag(t,′ ImageLength′enumrows)
setTag(t,′ ImageWidth′, numcols)
setTag(t,′ TileLength′, 32)
setTag(t,′ TileWidth′, 32)
setTag(t,′ PlanarCon f iguration′, Ti f f .PlanarCon f iguration.Chunky)
write(t, data)
close(t)

end
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